
Di�erential Equations and Numerical

Approximation using C++

Matthias Gunz

11-25-2007

1 Idea

The fundamental idea of this project is, to show the di�erent numerical methods of solving di�erential
equations. DE's are very important in physics because they describe many problems like body
systems, processes in electrical engineering, etc.
In this project i decided to use C++, because it is a very common programming language and
i wanted to expand my poor knowledge about it. Another reason was, that i have had to write
everything on my own and no math program like MatLab, Mathematica, etc. o�ered the algorythms
to solve the equations. So, my �rst task was to get comfortable with the approximation methods
and how i am able to translate them into C++ - Code.
This project paper should give an overview of these methods, their quality and their implementation.
I tried to produce a graphical interface with Qt, so that it would have been possible to change the
DE formula without editing the �le, but it came out that this would have been a lot of additional
work and i've already had enough problems with the C++ - Code.

2

2 Numerical Approximation Methods

2.1 Introduction

The very imortant and probably the oldest usage of computers in physics is to solve Di�erential
Equations. The �rst full electronical mainframe called ENIAC - programmed with connectors - was
used to solve partial DEs for nuclear fusion and made it possible to develop the hydrogen bomb. The
americans didn't win the race to the moon because of their better rocket technology, but of their
ability to build the �rst computer, light enough �tting into the spacecraft computing numerically
the �ight path.

ENIAC (Electronic Numerical Integrator and Computer)

2.2 Discretization

Computer are �nite machines and therefore can only work with discrete problems. Firstly, in equa-
tions the independent variable x (or t in time dependent DEs) has to be discretized:

x = x0 + jh; j ∈ N

Where h is the step size in this iteration. The iteration index j adopts the role of the independent
variable and one can use the following notation:

xj = x0 + jh, yj = y(xj), y
′
j = y′(xj)

3

2 Numerical Approximation Methods

2.3 Euler Method

The root of every iteration method is the taylor expansion:

yj+1 =
∞∑

k=0

hk

k!
y

(k)
j = yj + hy

′
j +

h2

2
y

′′
j + ...

If every derivation would be known, one could iterate exactly the Di�erential Equation. Unfortu-
nately, only the �rst derivate is given through:

y
′
j = f(xj , yh)

The simplest method is therefore to cancel after the 1st order, what leads to an iteration error of
the order O(h2). This method is called Euler:

yj+1 = yj + hf(xj , yj) +O(h2)

Functionality of the Euler Method

The Euler method is very popular in solving Integrations, but not very exact. To improve the
accuracy, the step size h must be chosen very small.

2.4 Runge-Kutta 2nd Order

As a matter of fact, it is possible to improve the e�ciency and accuracy of a numerical iteration with
little e�ort, by using Runge-Kutta. The Runge-Kutta Method 2nd order doesn't use the gradient of
the left/precedent point - like Euler - to proceed to the next point, but the gradient in the middle
of the two points. Thereto you do an half iteration step h/2, compute the gradient using function f
and use it for the step to the next point. Therefore the Runge-Kutta 2nd order is not much more
complicated than Euler. On the one hand the iteration needs a bit more time, because the function f
has to be computed twice, but the error reduces to the order O(h3). On the other hand it is possible
to work at the same accuracy with a bigger step size and therefore in less time.
The functionality of RK2 is following:

k1 = h · f(xj , yj)

yj+1 = yj + h · f(xj +
h

2
, yj +

k1

2
) +O(h3)

4

2 Numerical Approximation Methods

Functionality of the RK2 method

2.5 Runge-Kutta 4th Order

Runge-Kutta 2nd order has an error of O(h3). On a related way you can de�ne the Runge-Kutta
methods of higher orders: A RK kth order would converge with decreasing step size with an error
of O(hk+1). But these methods of higher order are not clearly de�ned, there is not the Runge-Kutta
kth order, rather a variety of approaches.
If you increase the order, you can expect a obvious improvement and a much more complicated
algorithm. A good trade-o� standing the test in practise is the Runge-Kutta method 4th order -
alias known as the classical Runge-Kutta method:

k1 = h · f(xj , yj)

k2 = h · f(xj +
h

2
, yj +

k1

2
)

k3 = h · f(xj +
h

2
, yj +

k2

2
)

k4 = h · f(xj + h, yj + k3)

yj+1 = yj +
k1

6
+
k2

3
+
k3

3
+
k4

6

At �rst - like in RK2 - the gradient k2 in the middle of the two points will be computed. With
k2another point at the half interval is approximated, where the gradient k3is taken. At last, k4is
computed at the end of the inverval. With these four parameters a mean value is formed, used as
the gradient for the whole step. It is easier to understand regarding the following �gure.

5

2 Numerical Approximation Methods

Functionality of the RK4 method

2.6 Runge-Kutta-Fehlberg 4th Order

It often occurs, that in certain regions of a function a very accurate iteration is needed, while in
other regions greater steps are adequate. So it would be an advantage if an algorithm would adjust
the step size dynamically. Further on the adjustment should be done fast and not only in large
distances and the half step method should be avoided, because of the great time e�ort. A method,
that computes the error spontaniously with the k-values and �ts the step size dynamically is the
Runge-Kutta-Fehlberg method 4th order (aka. RKF45). This method uses following equations:

k1 = h · f(xj , yj)

k2 = h · f(xj +
h

4
, yj +

k1

4
)

k3 = h · f(xj +
3
8
h, yj +

3
32
k1 +

9
32
k3)

k4 = h · f(xj +
12
13
h, yj +

1932
2197

k1 −
7200
2197

k2 +
7296
2197

k3)

k5 = h · f(xj + h, yj +
439
216

k1 − 8 · k2 +
3680
513

k3 −
845
4104

k4)

k6 = h · f(xj +
1
2
h, yj −

8
27
k1 + 2 · k2 −

3544
2565

k3 +
1859
4104

k4 −
11
40
k5)

yj+1 = yj +
16
135

k1 +
6656
12825

k3 +
28561
56430

k4 −
9
50
k5 +

2
55
k6

Beacause there are more interim values as needed for the computation of yj+1, a better approxi-
mation of 5th order can be computed:

zj+1 = yj +
16
135

k1 +
6656
12825

k3 +
28561
56430

k4 −
9
50
k5 +

2
55
k6

If ε is the given tolerance, an adjustment of the step size h will be:

h = h ·
(

ε · h
2 |zj+1 − yj+1|

)1/4

6

3 Programming

The implementation of the numerical methods into the C++ code needed some research and getting
involved in the way of programming this language. The main di�culties were: how am i able to
return all the y(x) values from the functions to the main programm and how to implement an
di�erential equation as a function. At �rst i decided to handle the DE-function as a pointer function
and tried to stay away from the simple �return� of an expression:

Unfortunately i wasn't able to implement it in my numerical functions, because of the strange
complexity of pointers and so i returned to the old style, by staying away from a pointer function:

The numerical approximation methods are functions as well and shown in the code below:
Euler in C++:

7

3 Programming

Runge-Kutta 2nd order in C++:

Runge-Kutta 4th order in C++:

8

3 Programming

Runge-Kutta-Fehlberg 4th order in C++:

9

3 Programming

And �nally the main-programm which calls all numerical functions and writes the computed
iterations into a �le called �out.dat�.

The output �le shows the number of steps and the needed x and y values to plot all the di�erent
numerical approached data:

steps/x-value/Euler/RK2/RK4/x-RKF/RKF45

10

3 Programming

Here the Di�erential Equation y′ = y + x− 1 was computed with the following preferences:

• area from a = 0 to b = 3

• step size h = 0.5

• start value y0 = 1.0

Finally the data was plotted using SciLab:

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

2

4

6

8

10

12

14

16

18

Differential Equation with different approximaiton methods

X−Value

Y
−

V
al

ue

Euler
RK2
RK4
RKF45
Exact

11

3 Programming

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−1

0

1

2

3

4

5

6

7

8

9

Error compared to exact solution

X−Value

Y
−

V
al

ue

Euler
RK2
RK4
RKF45

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−0.005

0.000

0.005

0.010

0.015

0.020

0.025

Error compared to exact solution for RK4 and RKF45

X−Value

Y
−

V
al

ue

RK4
RKF45

12

3 Programming

I wrote a small script called �run� to do the work for you. All what you have to do is to change the
DE in the �project.cc� as you like and in the Scilab �le �dataplot.sce� to compare it to the numerical
data in the output �le of the C++ script, then start the script with �./run� and you should see the
plotted graphs.

13

