THE UNIVERSITY OF BRITISH COLUMBIA

Physics 401 Assignment # 6:
Electromagnetic Waves

SOLUTIONS:

Wed. 8 Feb. 2006 — finish by Wed. 22 Feb.

CMBR: Most of the electromagnetic energy
in the universe is in the cosmic microwave
background radiation (CMBR), sometimes
referred to as the 3° Kelvin background.
Penzias and Wilson discovered the CMBR, in
1965 using a radio telescope, and subsequently
received the Nobel Prize for this discovery. This
background radiation has wavelength
A ~ 1.1 mm. The energy density of the CMBR
is about 4.0 x 10~ J/m3. What is the rms
electric field strength of the CMBR?
ANSWER: If
<uEM> =¢o(E?) = 4.0 x 107 J/m3, then
Erms = \/<E2> \/< el /€0 =

\ o 88i401>é%g><11i) T = 0 0672 V/m (The

wavelength, while interesting, is irrelevant to the
question.)

STANDING WAVES: Consider standing
electromagnetic waves:

Ey (sinkz sinwt) & with
= By(coskz coswt)y .

willesf!
|

(a) Show that these satisfy the wave equation
(9.2). ANSWER: When we're taking the
spatial derivatives, the t-dependent factor is
just part of the amplitude, and vice versa.
Thus V2sinkz = —k?sinkz and

V2coskz = —k? COb kz;
0/0tsinwt = —w?sinwt and
0/0t coswt = —w? coswt; so

V2E — (1/c?)0E /0t = (—k* + w?/c*)E
and similarly for B. But
(—k? +w?/c?) = —k?[1 — (Ww?/k?)/c?] =0
since ¢ = w/k. Thus and
similarly for B. v Q€D

(b) Show that we must also have ¢ = w/k and
Ey = cBy. ANSWER: Since c=w/k is
a universal property of all solutions of The
Wave Equation (TWE), that's a given.
Applying FARADAY’S LAW,
VxE= —8B/8t gives
Eosinwt V x (sinkz &) =
—By coskz d(coswt) /0t g or

ky Egcoskz sinwt =

w Y By coskz sinwt. Dividing out the
common factor ¢ coskz sinwt gives
kEy = wBy or (since ¢ = w/k)

[Bo=chy ] ¥ 0sp

(¢) Show that the time-averaged power flow
across any area will be zero.
ANSWER: S=E x H = (& x §))
(EoBo/p) (sinkz sinwt) (coskz coswt) =
2 (EoBo/u) (sinkz coskz) (sinwt coswt).
Looking only at the ¢t-dependence to get the
time average, we note that
sinwt coswt = % sin(2wt) which averages to
zero. ¥ QED

(d) Show that the Poynting vector will also be
zero, i.e. there is no net energy flow.
ANSWER: | must apologize for a
defective question. [The hazards of using
someone else’s problem!] As explained
above, S = (EyBy/4p) sin2kz - sin 2wt .
This is only zero where sin 2kz = 0, i.e. at
z =0 and 2kz = nr (where n is any
integer). That is, for z = nA/4. At any
other position, S oscillates in the +2
direction, averaging to zero.

(p. 386, Problem 9.14) — REFLECTED &
TRANSMITTED POLARIZATION: In
Egs. (9.76) and (9.77) it was tacitly assumed
that the reflected and transmitted waves have
the same polarization as the incident wave,
namely along the & direction. Prove that this
must be so. [Hint: Let the polarization vectors
of the reflected and transmitted waves be

ny = cosOrx +sinfry and

nr = cosOrx +sinfry

and prove from the boundary conditions that
07 =0r =0] ANSWER: We must have E|
continuous across the boundary. Since the normal
direction is k = 2, EH is constituted of x and y

components. Thus E; + ER = ET or
Er + Egcosfr = Ercosfr [1] and
Egrsinr = Epsinfr [2]. Similarly, H| must be
continuous across the boundary, and, as always,
vB =k x E, giving Zr=Lucosln _ Ercostr [3]
and Ersinfr _ _ Ersinfr [ ] H'-ﬁ — M1v1

H1v1 H2V2 H2v2’

Eq. [4] reads FRsinfr = —FEr sin 7, which we
can combine with Eq. [2] to conclude that
FErpsinfp = —BFE7 sin 07, which can be true only

if Ep = 0 (trivial case) or (mod 27).
Equation [2] then also requires (mod

2r). ¥ QED

(p- 392, Problem 9.15) — COMPLEX
ALGEBRA EXERCISE: Suppose that we




have six nonzero constants A, B, C, a, b, ¢ such
than Ae’® + Be™®* = Ce™® for all x. Prove that
a=b=cand A+ B=C. ANSWER: The
first part is easy: if it were not true that

a = b = c then even if the equation were satisfied
at some position in z, it would not be satisfied at
some nearby z. So a = b = c. ¥V The second part
is even easier: at z =0, A+ B = C. Done. vV

(p- 392, Problem 9.17) — DIAMOND: The
index of refraction of diamond is 2.42.
Construct the graph analogous to Figure 9.16
for the air/diamond interface. (Assume

w1 = po = po.) ANSWER: FRESNEL’S
EQUATIONS read

B (ey E_(2)
El  \a+p8)’ EI \a+p
where

2
cosfr /1 —sin?0r B 1- {ﬂ_; sm@;}

o= =
cosOr cos Oy cos Oy

and = PAUL _ A2 1o this case B =2.42 (we
pi2V2  fiony

assume the light is entering the diamond rather

\/1 — (sinf;/2.42)
cos O '
You can use your favourite spreadsheet or other
plotting software to produce the graph below. (I
used http://musr.org/muview/, a free Java
spreadsheet applet we built at TRIUMF.)

than emerging) and o =

1 , . :
Figure 9.16 for DIAMOND
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In particular, calculate

(a) the amplitudes at normal incidence;
ANSWER: For 6; =0, a =1, giving

. 1—242 - = =

EF = oo 2.422135 or| EFf = —0.4152E¢
d El = El

Mo T o0

Ef = 0.5848E}
(b) Brewster’s angle;

ANSWER: sin’fp =

=5
(n1/n2)? — 32

_ 1-5.8564 _
= (1/55501)=58561 — 0-85415 or

sinfp = 0.9242 = | 5 = 67.55° |.

(¢) and the “crossover” angle at which the
reflected and transmitted amplitudes are
equal. ANSWER: Rather than try to
read this off the graph, let’s calculate it
exactly: The conditionisa— 3 =2or

\/1 — (sinf;/2.42)
o =
cos O
1 — (sin;/2.42)* = 19.5364 cos® 0 or
5.8564 — 1 + cos? 0y = 114.413 cos® 01 or
4.8564 = 113.413 cos? 0y or
cos? 07 = 4.8564/113.413 = 0.04282 or

cosfr = 0.20693 = | O = 78.06° |.

PLANE WAVE STRESS TENSOR: Find
all the elements of the Maxwell stress tensor of
a monochromatic plane wave traveling in the
z-direction, polarized in the z-direction:

=4.42 or

-

E(z,t) = Egcos(kz —wt+ )@

E
= cos(kz —wt +9)y

B(z,t)
&

ANSWER: Recall Eq. (8.19) on p. 352:
Ti; = eo (BiEj — 8(i5)E?/2) + (B B; — 6(ij)B?/2) /o -

Here E; = 6,1 E where E = Eycos(kz —wt + 9)
and B; = ;2B where B = % cos(kz —wt + 9)

= E/¢, so all off-diagonal elements are zero. We
have T11 = €0 (E2 — E2/2) — 32/2/10 =

€0 (E2/2 — E2/2€0/.L062) =€ (E2/2 — E2/2) or
T11 = 0, T22 = —60E2/2+ (32 - 32/2) Mo =

€0 (—E?/2+ E%/2eopoc?) = €0 (—E?/2 + E?/2)
or Toe = 0 and T3 = —egE%/2 — B? /2 or (only

nonzero element!) ‘ T3 = —oE? = —u

o -

In what direction does this EM wave transport
momentum?  Does this agree with the form of
the Maxwell stress tensor you just deduced?
ANSWER: If Tj; represents the force per unit
area acting in the &; direction on a surface whose
normal is in the &; direction, then the diagonal
elements are pressures and T33 is the radiation
pressure on a surface normal to 2. In the same
way —T33 represents the the momentum current
density transported by the fields, and is (as
expected) in the same direction as k and is, in
fact, equal to 5’/6.



(p. 412, Problem 9.33) — SPHERICAL WAVES: Suppose that

(7” 0,6,1) = Asinf

{cos (kr — wt) — (%) sin (kr — wt)} ¢

with ¢ = w/k, as usual. [This is, incidentally, the simplest possible spherical wave. For notational convenience,
let (kr — wt) = u in your calculations.]

(a) Show that E obeys all four of Maxwell’s equations, in vacuum, and find the associated magnetic field.
ANSWER: Since E = E¢ and E does not depend on ¢, GAUSS’ LAW reads (in spherical coordinates)

S o 1 OF
E=—_"Z""—_90o. VvV 1
v rsin® ¢ 0 (1)
o o 1 0 10 P 1 OEY . 1 OF
V xE = rsmeaa(Esmﬁ) ;E(TE)O—TSHIO (Ecos@—kbln@ag)r—;(E—FTE)H. (2)
OFE  Acosf 1 . cosf
Now, 0= {cosu ~ 3 5in u] =F g (3)
and OF _ Asind COsu_sinu +Asin9 ksinu +smu_kcosu
or r2 kr kr2 kr
Asind sinu .
= 2 {—2 cosu + 2? — kr blnu] (4)
| 1. N . L L. )
so VXE==42cosf|cosu— —sinu|# + sinf |cosu+ | kr — — | sinu| 0 ; . (5)
r2 kr kr
In order to satisfy FARADAY’S LAW we must therefore have (within a constant of integration)
_ . A [ P 1 7
B = —/ (V X E) dt = —3 {2(:050 [C’— HS] 7 +sind {C—F <k‘r— H) S] 0} (6)
where C = /cosu dt = -2 and S = /sinu dt = <2 (Note: w =ck .) (7)
w
Th B—A2~o~'+1 su| 7+ sin |si o — su| 0 (8)
us =~ (2cosd sinu+ - cosu| 7 +sinf |sinu =4 ) cosu
orB:BT 7+ By 0 where
2Acosf 1 Asinf 1
B, = =227 - By = 23O | (ke — =) cosul .
= { sinwu + o, €05 u] and By - {blnu (kr kr> cos u] (9)
This should satisfy GAUSS LAW too: ¥ - B = — - (r*B,) + Lo (sin6Bp)
y ' r20r " n6 o0 f
= 72Ac0s92 sinu + L os + 714 sin u + L +k ( in 9)
T Tz ar U0 T g O ckrdsing | fr )R °
L2t f (o LN e (e L
= COSU — -5 cosu — —sinu - |sinu T cosu
2Acosf 1 1
= {kcosu ~ gz Cosu— ~ sinu + - sinu — kcosu + k—cosu =0. (10)
. = o1 B, -
It remains only to check AMPERE’S LAW: V x B = - 9 (rBp) 0 ¢ or
r |Or 00
= _ 1 (Asinf [ . 1
VxB = ;{W [slnu—<k‘r—ﬁ)c05u}

Asin6

+ ckr

1 1 .
[k‘co&u— (k—i— W) cosu+ k (kr— H) smu]



()

2Asinf | . CcoS U -
ckr? [ ut kr}}q”)

= M — [sinu — kr—i cos U
T ckr3 kr
1
+ |krcosu — k‘r—|—ﬁ>cosu—|—(k2r2—1)sinu
. cosulY ~
—|—2[smu+ kr }}¢)
Asin@

giving Vx B = = (cosu + krsinu) ¢ . (11)

10E k*0E kOE

Now, if we're to get any joy from this, it had better be equalto - — = — — = — —
& y 1oy q 2 ot w? Ot cw Ot

k Asin@ 0 sin u Asin® k . cosu
= SU — (;b = — [wsmu—i—w } 0]
cw 1T Ot rocw T
A
= ;na (krsmu—!—cosu)qb vV QED (12)

Thus the proposed function does satisfy all of MAXWELL'S EQUATIONS as advertised and is therefore also a valid
solution of TWE (The Wave Equation). And this is the simplest possible spherical wave! (Don't you just love
curvilinear coordinates?)

Calculate the Poynting vector. Average S over a full cycle to get the intensity vector I. DoesI point in
the expected direction? Does it fall off like 72, as it should? ANSWER:

. ExB R 1 R
§ = =X (E¢) (B,,fa+399) - = (EBTB—i—EBgf")
Ho NO Ho
A2 i R
= _W _2sm@cos0 (cosu — %) (sinu+ cc]);U) 0
. 9 sin u . cosu\ .
+ sin“ 0 | cosu — (smu—krcosu—i— ) r
kr kr
A2 2 .2 . A
= _—,uockr3 _2 sin @ cos 0 (cosu sinu + co;ru — Slzru - uk:osu) 0
. 9 . 9 cos?u  sin®u : sinu cosu\
+ sin“ 0 | cosu sinu — kr cos” u + — +sinu cosuy — ————=——
kr kr k2r2
A2 1 2 w2 .
= —— 2sinfcosf |cosu sinu | 1 — — cosu— oMy 0
wockr kr kr
1 2. ain2
+ sin®6 {cosu sinu (2 — W) — krcos®u + W] f'} (13)

The fact that S has a non-radial component may seem alarming, but let's check the time average: all of
sinu cosu, sin®u and cos?u oscillate in time, but only the first averages to zero; the other two average to %
but their difference does average to zero. Thus

= A%sin? 6 kr A?sin?6 7

I=(S)= pockr® 2 "= 2upc 12’ (14)

which points radially outward and falls off like 1/r2, as expected.

Integrate I -da over a spherical surface to determine the total power radiated.

[You should get P = 4w A2 /3ugc.] ANSWER:
sin” 0 A? A?
P= // I-da= / bm2 22 sin df = 1 sind 0dg = — (1 — cos® 0) d(cos 0)
2ppc r Loc woc Jq1
A2t A? 2 Am A?
o P="2 (1—x2)dx=L(2——> or | P=-" .V
HoC J—1 HocC 3 3poc

This was a tedious problem; it took me all day to get it right. | will be duly impressed if you managed to grind through
it successfully. Now you know why we like our plane waves so much, Huygens' principle notwithstanding!



