
The University of British Columbia

Physics 401 Assignment # 6:

Electromagnetic Waves

SOLUTIONS:

Wed. 8 Feb. 2006 — finish by Wed. 22 Feb.

1. CMBR: Most of the electromagnetic energy
in the universe is in the cosmic microwave
background radiation (CMBR), sometimes
referred to as the 3◦ Kelvin background.
Penzias and Wilson discovered the CMBR in
1965 using a radio telescope, and subsequently
received the Nobel Prize for this discovery. This
background radiation has wavelength
λ ∼ 1.1 mm. The energy density of the CMBR
is about 4.0 × 10−14 J/m3. What is the rms
electric field strength of the CMBR?
ANSWER: If
〈u

EM
〉 = ǫ0〈E

2〉 = 4.0 × 10−14 J/m3, then
Erms ≡

√

〈E2〉 =
√

〈u
EM

〉/ǫ0 =
√

4.0×10−14

0.88541878×10−11 = 0.0672 V/m . (The

wavelength, while interesting, is irrelevant to the
question.)

2. STANDING WAVES: Consider standing
electromagnetic waves:

~E = E0 (sinkz sin ωt) x̂ with
~B = B0 (cos kz cosωt) ŷ .

(a) Show that these satisfy the wave equation
(9.2). ANSWER: When we’re taking the
spatial derivatives, the t-dependent factor is
just part of the amplitude, and vice versa.
Thus ∇2 sin kz = −k2 sin kz and
∇2 cos kz = −k2 cos kz;
∂/∂t sinωt = −ω2 sin ωt and
∂/∂t cosωt = −ω2 cosωt; so

∇2 ~E − (1/c2)∂ ~E/∂t = (−k2 + ω2/c2)~E

and similarly for ~B. But
(−k2 + ω2/c2) = −k2[1 − (ω2/k2)/c2] = 0,

since c = ω/k. Thus �
2~E = 0 and

similarly for ~B.
√

QED

(b) Show that we must also have c = ω/k and
E0 = cB0. ANSWER: Since c = ω/k is
a universal property of all solutions of The
Wave Equation (TWE), that’s a given.
Applying Faraday’s law,
~∇ × ~E = −∂ ~B/∂t, gives

E0 sinωt ~∇ × (sin kz x̂) =
−B0 cos kz ∂(cosωt)/∂t ŷ or

k ŷ E0 cos kz sin ωt =
ω ŷ B0 cos kz sin ωt. Dividing out the
common factor ŷ cos kz sin ωt gives
kE0 = ωB0 or (since c = ω/k)

E0 = cB0 .
√

QED

(c) Show that the time-averaged power flow
across any area will be zero.
ANSWER: ~S = ~E × ~H = (x̂ × ŷ)
(E0B0/µ) (sin kz sin ωt) (cos kz cosωt) =
ẑ (E0B0/µ) (sin kz cos kz) (sin ωt cosωt).
Looking only at the t-dependence to get the
time average, we note that
sin ωt cosωt = 1

2 sin(2ωt) which averages to

zero.
√

QED

(d) Show that the Poynting vector will also be
zero, i.e. there is no net energy flow.
ANSWER: I must apologize for a
defective question. [The hazards of using
someone else’s problem!] As explained

above, ~S = (E0B0/4µ) sin 2kz · sin 2ωt ẑ.
This is only zero where sin 2kz = 0, i.e. at
z = 0 and 2kz = nπ (where n is any
integer). That is, for z = nλ/4. At any

other position, ~S oscillates in the ±ẑ

direction, averaging to zero.

3. (p. 386, Problem 9.14) — REFLECTED &

TRANSMITTED POLARIZATION: In
Eqs. (9.76) and (9.77) it was tacitly assumed
that the reflected and transmitted waves have
the same polarization as the incident wave,
namely along the x̂ direction. Prove that this
must be so. [Hint: Let the polarization vectors
of the reflected and transmitted waves be

n̂T = cos θT x̂ + sin θT ŷ and
n̂R = cos θRx̂ + sin θRŷ

and prove from the boundary conditions that
θT = θR = 0.] ANSWER: We must have ~E‖

continuous across the boundary. Since the normal
direction is k̂ = ẑ, ~E‖ is constituted of x and y

components. Thus ~EI + ~ER = ~ET or
EI + ER cos θR = ET cos θT [1] and

ER sin θR = ET sin θT [2]. Similarly, ~H‖ must be
continuous across the boundary, and, as always,
v ~B = k̂ × ~E, giving EI−ER cos θR

µ1v1
= ET cos θT

µ2v2
[3]

and ER sin θR

µ1v1

= −ET sin θT

µ2v2

[4]. If β ≡ µ1v1

µ2v2

,

Eq. [4] reads ER sin θR = −βET sin θT , which we
can combine with Eq. [2] to conclude that
ET sin θT = −βET sin θT , which can be true only

if ET = 0 (trivial case) or θT = 0 (mod 2π).

Equation [2] then also requires θR = 0 (mod

2π).
√

QED

4. (p. 392, Problem 9.15) — COMPLEX

ALGEBRA EXERCISE: Suppose that we
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have six nonzero constants A, B, C, a, b, c such
than Aeiax +Beibx = Ceicx for all x. Prove that
a = b = c and A + B = C. ANSWER: The
first part is easy: if it were not true that
a = b = c then even if the equation were satisfied
at some position in x, it would not be satisfied at
some nearby x. So a = b = c.

√

The second part
is even easier: at x = 0, A + B = C. Done.

√

5. (p. 392, Problem 9.17) — DIAMOND: The
index of refraction of diamond is 2.42.
Construct the graph analogous to Figure 9.16
for the air/diamond interface. (Assume
µ1 = µ2 = µ0.) ANSWER: Fresnel’s

equations read

ẼR
0

ẼI
0

=

(

α − β

α + β

)

,
ẼT

0

ẼI
0

=

(

2

α + β

)

where

α ≡
cos θT

cos θI
=

√

1 − sin2 θT

cos θI
=

√

1 −
[

n1

n2
sin θI

]2

cos θI

and β ≡
µ1v1

µ2v2
=

µ1n2

µ2n1
. In this case β = 2.42 (we

assume the light is entering the diamond rather

than emerging) and α =

√

1 − (sin θI/2.42)
2

cos θI
.

You can use your favourite spreadsheet or other
plotting software to produce the graph below. (I
used http://musr.org/muview/, a free Java

spreadsheet applet we built at TRIUMF.)

In particular, calculate

(a) the amplitudes at normal incidence;
ANSWER: For θI = 0, α = 1, giving

ẼR
0 =

1 − 2.42

1 + 2.42
ẼI

0 or ẼR
0 = −0.4152ẼI

0

and ẼT
0 =

2

1 + 2.42
ẼI

0 or

ẼT
0 = 0.5848ẼI

0 .

(b) Brewster’s angle;

ANSWER: sin2 θB =
1 − β2

(n1/n2)2 − β2

= 1−5.8564
(1/5.8564)−5.8564 = 0.85415 or

sin θB = 0.9242 ⇒ θB = 67.55◦ .

(c) and the “crossover” angle at which the
reflected and transmitted amplitudes are
equal. ANSWER: Rather than try to
read this off the graph, let’s calculate it
exactly: The condition is α − β = 2 or

α =

√

1 − (sin θI/2.42)
2

cos θI
= 4.42 or

1 − (sin θI/2.42)
2

= 19.5364 cos2 θI or
5.8564− 1 + cos2 θI = 114.413 cos2 θI or
4.8564 = 113.413 cos2 θI or
cos2 θI = 4.8564/113.413 = 0.04282 or

cos θI = 0.20693 ⇒ θC = 78.06◦ .

6. PLANE WAVE STRESS TENSOR: Find
all the elements of the Maxwell stress tensor of
a monochromatic plane wave traveling in the
z-direction, polarized in the x-direction:

~E(z, t) = E0 cos(kz − ωt + δ)x̂

~B(z, t) =
E0

c
cos(kz − ωt + δ)ŷ

ANSWER: Recall Eq. (8.19) on p. 352:

Tij = ǫ0
`

EiEj − δ(ij)E
2/2

´

+
`

BiBj − δ(ij)B
2/2

´

/µ0 .

Here Ei = δi1E where E ≡ E0 cos(kz − ωt + δ)
and Bi = δi2B where B ≡ E0

c cos(kz − ωt + δ)
= E/c, so all off-diagonal elements are zero. We
have T11 = ǫ0

(

E2 − E2/2
)

− B2/2µ0 =

ǫ0
(

E2/2 − E2/2ǫ0µ0c
2
)

= ǫ0
(

E2/2 − E2/2
)

or

T11 = 0, T22 = −ǫ0E
2/2 +

(

B2 − B2/2
)

µ0 =

ǫ0
(

−E2/2 + E2/2ǫ0µ0c
2
)

= ǫ0
(

−E2/2 + E2/2
)

or T22 = 0 and T33 = −ǫ0E
2/2−B2/2µ0 or (only

nonzero element!) T33 = −ǫ0E
2 = −u

EM
.

In what direction does this EM wave transport
momentum? Does this agree with the form of
the Maxwell stress tensor you just deduced?
ANSWER: If Tij represents the force per unit
area acting in the x̂i direction on a surface whose
normal is in the x̂j direction, then the diagonal
elements are pressures and T33 is the radiation
pressure on a surface normal to ẑ. In the same
way −T33 represents the the momentum current
density transported by the fields, and is (as

expected) in the same direction as k̂ and is, in

fact, equal to ~S/c.
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7. (p. 412, Problem 9.33) — SPHERICAL WAVES: Suppose that

~E(r, θ, φ, t) =
A sin θ

r

[

cos (kr − ωt) −

(

1

kr

)

sin (kr − ωt)

]

φ̂

with c = ω/k, as usual. [This is, incidentally, the simplest possible spherical wave. For notational convenience,
let (kr − ωt) ≡ u in your calculations.]

(a) Show that ~E obeys all four of Maxwell’s equations, in vacuum, and find the associated magnetic field.

ANSWER: Since ~E = Eφ̂ and E does not depend on φ, Gauss’ law reads (in spherical coordinates)

~∇ · ~E =
1

r sin θ

∂ E

∂φ
= 0 .

√

(1)

~∇ × ~E =
1

r sin θ

∂

∂θ
(E sin θ) r̂ −

1

r

∂

∂r
(rE) θ̂ =

1

r sin θ

(

E cos θ + sin θ
∂ E

∂θ

)

r̂ −
1

r

(

E + r
∂ E

∂r

)

θ̂ . (2)

Now,
∂ E

∂θ
=

A cos θ

r

[

cosu −
1

kr
sin u

]

= E
cos θ

sin θ
(3)

and
∂ E

∂r
= −

A sin θ

r2

(

cosu −
sin u

kr

)

+
A sin θ

r

(

−k sin u +
sin u

kr2
−

k cosu

kr

)

=
A sin θ

r2

[

−2 cosu + 2
sinu

kr
− kr sinu

]

(4)

so ~∇ × ~E =
A

r2

{

2 cos θ

[

cosu −
1

kr
sin u

]

r̂ + sin θ

[

cosu +

(

kr −
1

kr

)

sin u

]

θ̂

}

. (5)

In order to satisfy Faraday’s law we must therefore have (within a constant of integration)

~B = −

∫

(

~∇ × ~E
)

dt = −
A

r2

{

2 cos θ

[

C −
1

kr
S

]

r̂ + sin θ

[

C +

(

kr −
1

kr

)

S

]

θ̂

}

(6)

where C ≡

∫

cosu dt = −
sinu

ω
and S ≡

∫

sinu dt =
cosu

ω
. (Note: ω = ck .) (7)

Thus ~B =
A

ckr2

{

2 cos θ

[

sin u +
1

kr
cosu

]

r̂ + sin θ

[

sin u −

(

kr −
1

kr

)

cosu

]

θ̂

}

(8)

or ~B = Br r̂ + Bθ θ̂ where

Br =
2A cos θ

ckr2

[

sin u +
1

kr
cosu

]

and Bθ =
A sin θ

ckr2

[

sin u −

(

kr −
1

kr

)

cosu

]

. (9)

This should satisfy Gauss’ law too: ~∇ · ~B =
1

r2

∂

∂r

(

r2Br

)

+
1

r sin θ

∂

∂θ
(sin θBθ)

=
2A cos θ

ckr2

∂

∂r

(

sin u +
1

kr
cosu

)

+
A

ckr3 sin θ

[

sin u +

(

1

kr
+ kr

)

cosu

]

∂

∂θ

(

sin2 θ
)

=
2A cos θ

ckr2

{(

k cosu −
1

kr2
cosu −

1

r
sin u

)

+
1

r

[

sin u −

(

kr −
1

kr

)

cosu

]}

=
2A cos θ

ckr2

[

k cosu −
1

kr2
cosu −

1

r
sin u +

1

r
sin u − k cosu +

1

kr2
cosu

]

= 0 .
√

(10)

It remains only to check Ampère’s law: ~∇ × ~B =
1

r

[

∂

∂r
(rBθ) −

∂ Br

∂θ

]

φ̂ or

~∇ × ~B =
1

r

{

A sin θ

ckr2

[

sin u −

(

kr −
1

kr

)

cosu

]

+
A sin θ

ckr

[

k cosu −

(

k +
1

kr2

)

cosu + k

(

kr −
1

kr

)

sin u

]
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+
2A sin θ

ckr2

[

sin u +
cosu

kr

]

}

φ̂

=
A sin θ

ckr3

{

−

[

sin u −

(

kr −
1

kr

)

cosu

]

+

[

kr cosu −

(

kr +
1

kr

)

cosu +
(

k2r2 − 1
)

sin u

]

+ 2
[

sin u +
cosu

kr

]}

φ̂

giving ~∇ × ~B =
A sin θ

cr2
(cosu + kr sinu) φ̂ . (11)

Now, if we’re to get any joy from this, it had better be equal to
1

c2

∂ ~E

∂t
=

k2

ω2

∂ ~E

∂t
=

k

cω

∂ ~E

∂t

=
k

cω

A sin θ

r

∂

∂t

[

cosu −
sin u

kr

]

φ̂ =
A sin θ

r

k

cω

[

ω sin u + ω
cosu

kr

]

φ̂

=
A sin θ

cr2
(kr sin u + cosu) φ̂ .

√

QED (12)

Thus the proposed function does satisfy all of Maxwell’s equations as advertised and is therefore also a valid
solution of TWE (The Wave Equation). And this is the simplest possible spherical wave! (Don’t you just love
curvilinear coordinates?)

(b) Calculate the Poynting vector. Average ~S over a full cycle to get the intensity vector ~I. Does ~I point in
the expected direction? Does it fall off like r−2, as it should? ANSWER:

~S =
~E × ~B

µ0
=

1

µ0

(

E φ̂
)

×
(

Br r̂ + Bθ θ̂
)

= −
1

µ0

(

EBr θ̂ + EBθ r̂
)

= −
A2

µ0ckr3

[

2 sin θ cos θ

(

cosu −
sin u

kr

)

(

sin u +
cosu

kr

)

θ̂

+ sin2 θ

(

cosu −
sin u

kr

)

(

sin u − kr cosu +
cosu

kr

)

r̂

]

= −
A2

µ0ckr3

[

2 sin θ cos θ

(

cosu sinu +
cos2 u

kr
−

sin2 u

kr
−

sin u cosu

kr

)

θ̂

+ sin2 θ

(

cosu sinu − kr cos2 u +
cos2 u

kr
−

sin2 u

kr
+ sin u cosu −

sin u cosu

k2r2

)

r̂

]

= −
A2

µ0ckr3

{

2 sin θ cos θ

[

cosu sinu

(

1 −
1

kr

)

+
cos2 u − sin2 u

kr

]

θ̂

+ sin2 θ

[

cosu sin u

(

2 −
1

k2r2

)

− kr cos2 u +
cos2 u − sin2 u

kr

]

r̂

}

. (13)

The fact that ~S has a non-radial component may seem alarming, but let’s check the time average: all of
sin u cosu, sin2 u and cos2 u oscillate in time, but only the first averages to zero; the other two average to 1

2 ,
but their difference does average to zero. Thus

~I ≡ 〈~S〉 =
A2 sin2 θ

µ0ckr3

kr

2
r̂ =

A2 sin2 θ

2µ0c

r̂

r2
, (14)

which points radially outward and falls off like 1/r2, as expected.

(c) Integrate ~I · d~a over a spherical surface to determine the total power radiated.

[You should get P = 4πA2/3µ0c.] ANSWER:

P =

∫∫

~I · d~a =
A2

2µ0c

∫ π

0

sin2 θ

r2
2πr2 sin θdθ =

πA2

µ0c

∫ π

0

sin3 θdθ = −
πA2

µ0c

∫ −1

1

(

1 − cos2 θ
)

d(cos θ)

or P =
πA2

µ0c

∫ +1

−1

(1 − x2)dx =
πA2

µ0c

(

2 −
2

3

)

or P =
4πA2

3µ0c
.

√

This was a tedious problem; it took me all day to get it right. I will be duly impressed if you managed to grind through
it successfully. Now you know why we like our plane waves so much, Huygens’ principle notwithstanding!


