Experiment 5

Chaotic Rhythms of a Dripping Faucet

5.1 Introduction

Undergraduate students are seldom if ever exposed to the fascinating field of nonlinear dynamics. The reason is that the topic is exceedingly complex from a theoretical standpoint. However, nonlinear dynamics is very prevalent in nature, and can arise from even the simplest of systems. Therefore, the following study of chaotic rhythms of a dripping faucet has been implemented for the purpose of introducing nonlinear dynamics at an undergraduate level.

Since this experiment has been modelled after a very thorough *Computers in Physics* article by Calahan, Leidecker and Calahan, the student will be referred directly to that paper for guidance in this experiment. However, a few notable modifications have been made to simplify the apparatus.

Rather than using the series of 4 litre reservoirs suggested by Calahan and coworkers, we have opted for a single 80 gallon tank. The large tank provides more stable flow rates over long periods of time and it is convenient to fill up with a large volume of water at the beginning of a session and to run continuously.

The most significant deviation from the design of Calahan *et al* is in the timing circuitry. Figure 2 of the abovementioned article shows a circuit centred around a 555 timing chip — a device which has become quite outdated. The circuit in our apparatus uses a much more direct approach; the drops pass through a phototransistor and the resultant electrical pulse activates a Schmidt trigger. Finally, the signal from the Schmidt trigger passes through a one-shot multivibrator to produce a digital pulse that can be read by the PC. The circuit elements have been laid out on a large breadboard so that the student may probe the circuit using an oscilloscope, and the circuit descriptions should be available.

5.2 Reference

R.F. Calahan, H. Leidecker and G.D. Calahan, Computers in Physics 4 (4) 368 (1990).