
The University of British Columbia

Physics 438 Assignment # 2:

MUSCLES, TENDONS & GASES

SOLUTIONS:

Tue. 23 Jan. 2007 — finish by Tue. 06 Feb.

Please hand in one assignment per group and list the names & Email addresses of all group members at the top of each sheet.

In general, if you think some necessary information is missing, make a reasonable assumption. But always write down what that

assumption is. Always estimate your uncertainty in any measured quantity, and don’t forget to specify all units.

If possible, justify your input. For original comments you may score bonus points!

1. ARMSTRONG:

Consider a human biceps as shown below.
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(a) Measure your biceps length ℓ0 and the distance sw. Estimate the distance st (explain how you do
this). Determine your muscle contraction ∆ℓ from similar triangles ∆h/sw = ∆ℓ/st when moving
the hand between positions (a) and (b). Does the maximum contraction agree with the often quoted
value ∆ℓ/ℓ0 = 10%?1 Determine the average cross sectional area and length of your biceps muscle to
find its volume Vbic and mass Mbic = ρVbic. What value should you use for the muscle density ρ?
ANSWER: To measure ℓ0, make an angle of 90◦ between your upper arm and forearm and measure
from the center of your shoulder down to the forearm. To measure st (the distance from the back of the
elbow to where the biceps is attatched), flex your biceps in the same position and you will see where it
attaches to the forearm. From this point to the center of your elbow is st, with which you can determine
the leverage, knowing the length sw of your forearm, measured from the center of your hand to the elbow.

To measure ∆ℓ, hold your upper arm vertical and lower your forearm until it makes a 40◦ angle with the
horizontal. Still holding your upper arm vertical, now raise your forearm until it is horizontal. Note the
change of height ∆h of the center of your hand (the same point used in your sw measurement). From

the similar triangles rule you get ∆ℓ = st × ∆h/sw . The oft-stated ratio is frequently an

underestimate; most people find a ratio ∆ℓ/ℓ0 of between 10 and 15 %. (Note also that this calculation
includes tendons in the total length ℓ0, so the muscle must have an even larger fractional contraction!)

To determine the cross section of your biceps, measure its diameter d at its widest point when relaxed.
As a first approximation you can model your biceps as two cones which are attatched on the flat side:

Vbic = 2 ×
1
3
πr2h = 2 ×

1
3
π(d/2)2 × sw/2 . For the density of your muscle you can use the density of

water (ρ = 1000 kg/m3).

(b) Find a heavy weight, say M = 5-10 kg, lift it as quickly as you can n = 10 times,2 and record the
time ∆t10 = 10∆t for these 10 cycles. Estimate the average time ∆tc that the muscle spent

1See section 3.2 Muscles and Tendons in the textbook.
2You should choose a weight heavy enough that “as fast as you can” does not have you actually pulling the weight

back down on each swing, otherwise you will be doing extra work that this calculation does not account for. (Imagine
doing this exercise in free fall and you will understand.) But don’t lift such a heavy weight that it causes injury!
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contracting in each cycle, determine your normalized muscle contraction speed V = ∆ℓ/(ℓ × ∆tc),
and compare it to the normalized maximum power speed Vmp ≈ 0.3V0 [s−1], where V0 is the intrinsic
muscle velocity for humans.3 Comment on the result. ANSWER: You can determine V exactly as
stated in the question. The textbook gives V0 = 3 s−1. If you use this value you will get a value of Vmp

which usually does not fully agree with your contraction speeds. One reason is that V0 is an avereage for
humans; some can contract faster, others much slower. Another important factor is whether or not your
muscles “max out” (run out of available ATP) during the repeated lifting.

Determine the power needed to raise the weight: P = Mg × ∆h/∆t. Estimate the mass ma of your
forearm and the approximate position of its center of mass (cm), so that you can get estimates of the
force Fa and power Pa needed to move the forearm. Add the forces Fm = F + Fa and the powers
Pm = P + Pa and give estimates of the specific muscle force f = Fm/A and the specific muscle
power of your biceps p = Pm/ma.

Make a table of ∆ℓ/ℓ0, ma, contraction frequency ν = n/∆t10, V/V0, f and p for all team members.

ANSWER: Since you are told explicitly what to do there is no difficuly here, except for modeling of
the forearm. The most elegant way to find its mass ma is the following: place a large bucket in an empty
tray and fill the bucket exactly to the brim, until the first few drops of water overflow; then stick your
forearm in the bucket and collect the resulting overflow in the tray. Measure the volume Vw of that water
any way you like; it is the same as the volume Va of your forearm that displaced it. If this seems too
messy, you can just use a round bucket only partly full and measure the height of the water in the bucket
before and after bathing your arm. From the change in height and the diameter of the bucket you can
find Va. Then use a density ρ intermediate between that of bone and that of water to calculate your
forearm’s mass ma = ρVa.

The center of mass is approximately in the center of your forearm (modeling it as a rod) as long as you
are not a rock climber or weight lifter with extra strong forearms. In that case you could model it as a
truncated cone, taking the diameter of your forearm where your biceps attaches as the base diameter and
the diameter of your wrist as the truncation diameter. In general, the center of mass ~R is defined by

~R =
1

M

∫∫∫
ρ(~r) ~r dV .

Now, we posed this problem in a form that allows you to neglect the “wasted” work done in accelerating
and decelerating the weight and the forearm: this work would be the same if you did the experiment in a
microgravity environment. To do that calculation you would need to know whether the rest of your body
were fixed or free to move in reaction to the forces applied to the mass; and you would need to calculate
the moments of inertia of the forearm plus weight to deterimine the rotational kinetic energy imparted in
each motion. Fortunately, by using enough weight to make this a nearly “pure lifting” problem, we can
avoid all that!

2. TENDON FORCES:
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3See section 3.2.4 Muscle Efficiency.
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(a) Calculate the tension T in the Achilles tendon of each member of your group when he or she stands
on the toes of one foot on a staircase, as shown above. For that you will have to know the person’s
body mass M and the relevant dimensions of their foot. ANSWER: First measure a and b, as
indicated in the Figure. You can assume that the axis of the tibia or “shin bone” passes through the
center of the large bump on your ankle, and that the attachment point of the Achilles tendon is half its
diameter in from the back of your heel. The ratio b/a is usually between 1/6 and 1/7. If you are at rest,
the downward gravitational attraction of the Earth on your body (Mg) must be counteracted by an equal
and opposite upward force from the ground, which is the reaction force to the downward force Mg that
your foot exerts on the ground, as shown in the Figure. The force you must use to calculate the
equilibrium of your foot is, of course, the external upward force Mg of the ground on your foot. The
Figure is a little misleading in this respect. It is also misleading in showing the tibia at an angle; this
could only be the case if you were standing in a crouched position, as when doing “squats” in the gym.
Normally your legs would be straight, and therefore almost vertical — and so would be the Achilles
tendon. If we treat the foot as a Free Body, application of

∑
F = 0 to yields Mg + T = C, where C is

the downward compression force of the tibia on the foot, which is unknown. We need more to solve the
problem — namely the condition for angular equilibrium,

∑
ΓA = 0 where the ΓA are torques about

some point A, which we are free to choose anywhere we like. It is almost always best to chose A
somewhere along the line of action of a force we don’t need to know (like C in the present case), since
that force produces no torque about that point. So a good choice for A is the end of the tibia, from
which we measured a and b. If we ignore the tilted tibia in the Figure, we might also assume the foot
itself to be horizontal, so that all the forces are vertical and act perpendicular to the horizontal “lever

arm” of the foot. This gives in one step Mg × a = T × b or T = Mg × a/b . Interestingly, if the foot

makes an angle of θ with the horizontal, the result is unchanged! Why?

(b) Measure the radius r of each person’s Achilles tendon and determine the corresponding specific
stress τ = T/(πr2). ANSWER: Flex your calf muscles and you will see your Achilles tendon clearly.
Measure its diameter with a caliper, and subtract your skin thickness (1-2 mm). Divide by two to get its
radius. The rest is self-explanatory.

(c) Make a table of M, T and τ for all team members. Email this information (in plain text, please!) to
Alex and he will make a compound table of this data for the whole class. ANSWER: This is
self-explanatory too.

3. BREEZING IN WHITEHORSE: On a fine winter morning in the Klondike the air is a balmy
T0 = 30◦C below the freezing point, and the pressure is at p = 1.03 bar = 1.03 × 105 N/m2. Robert
Rednose breathes deeply before descending into his gold mine, and takes in air at an average volume flow
rate Φ = A × u = 6.0 liter/min. (u is defined below). The air has to pass through his nostrils, which have
a total opening area of A = 2.8 cm2. The air warms up to the body temperature TB = +36◦C inside the
lung.

Air is a (mostly diatomic) molecular gas with specific heat Cp = (7/2)R, where R = 8.31 J/mole·◦K is the
gas constant. Recall the Ideal Gas Law pV = nRT , where the pressure p is in N/m2, the volume V is in
m3, n is the number of moles in the volume V and the temperature T is always in ◦K. Differentiate the
caloric energy equation, ∆Q = nCp∆T , to get the heat flow rate that must be provided by the lung to
maintain 36◦C.

ANSWER: Q̇ = ṅ [moles/s] × Cp [J/mole·◦K] × ∆T [◦K]

(a) How many moles are in one liter at this temperature and pressure? How many moles per second
does he inhale? ANSWER: The ideal gas law says pV = nRT , where n is the number of moles and
R = 8.314472(15) J·K−1

·mol−1 is the gas constant. Thus n = pV/(RT ). With p = 1.03 × 105 N/m2,
T = 243 K and V = 10−3 m3 = 1 ℓ, we get n1 = 0.0510 mol in one liter. Bob takes in 6.0 ℓ per minute

(60 seconds), so each second (on average) he breathes in 0.1 ℓ or ṅ = 0.0051 mol/s .

(b) How much heat power [Watts] does Robert lose by warming up the air? ANSWER: The specific
heat of air (a diatomic gas, except for small impurities) in this temperature range is Cp ≈ (7/2)R

= 29.1 J·K−1
·mol−1. Thus Q̇ = ṅ × Cp × ∆T = 0.0051× 29.1 × 66 or Q̇ = 9.8 W .

(c) What is the average intake velocity u at which the air streams through his nostrils?

ANSWER: u = φ/A = 0.1 × 10−3 m3s−1/2.8 × 10−4 m2 or u = 0.36 m/s .
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(d) Is the flow laminar (Re <
∼

2300) or turbulent (Re >
∼

2300)?4
ANSWER: Eq. (4.12) says

Re = D u/ν = Finert/Fvis, the ratio of inertial to viscous forces, where D is a typical dimension (like the
diameter of a pipe), u is a typical velocity and ν ≡ µ/ρ is the kinematic viscosity, which for air has a
typical value ν = 16 × 10−6 m2/s (from Table 3.4 on p. 86 of the textbook). If we treat Bob’s notrils as
circular, an area of 2.8 × 10−4 m2 corresponds to a radius of 0.94× 10−2 m or a diameter D ≈ 0.019 m.

Thus Re ≈ 0.36 × 0.019/(16× 10−6 or Re ≈ 430 . Therefore the flow is laminar, which is extremly
important! Turbulent flow would be very inefficient and it would cost Bob a lot of energy to move oxygen
into his lungs.

(e) Measure the open area A of your own nose and provide this data along with the body mass for each
individual. Plot the area A as an allometric relation A = aMα on a log – log graph for the members
of your group. What is the scaling exponent α for your data? What exponent do you expect? Why?
ANSWER: Depends on your noses. ;-)

OK, seriously: according to the textbook (p. 151) the surface area Alungs of the lungs (which limits the
amount of oxygen we can absorb) scales as Alungs = N0.33M0.68, where N is the number of alveoli,
which varies from person to person, and M is (as usual) the body mass. If we treat N as constant and

assume simple geometrical scaling of the volume V with the area Alungs (V ∝ A
3/2

lungs), this leads to a

scaling of the volume of a human lung with body mass as V = 5.7× 10−5M1.03 [see Tenny and Remmer
(1963) p. 150]. Assuming that the breath velocity u and time t per breath are the same for everyone, the
volume filled with air in one breath should be V = utA. If we further assume that ut is the same for
everyone, then V ∝ A, which implies A ∝ M1.03 as well. Of course, none of these assumptions are
likely to be exactly right, but this is the sort of reasoning we are looking for.

4Here Re = uR/ν, where u = flow velocity, R = typical radius of flow channel and ν = kinematic viscosity of air —
see Eq. (4.12) and the text between Figs. 4.8 and 4.10.


