
1Vetor CalulusYou don't really have to know this stu� to usemy HyperReferene. However, if you are math-ematially inlined you will surely enjoy the el-egane and eonomy of vetor notation whenapplied to alulus; if nothing else this is an�stheti treat | read it just for fun!Funtions of Several VariablesSuppose we go beyond f(x) and talk aboutF (x; y; z) | e.g. a funtion of the exat po-sition in spae. This is just an example, ofourse; the abstrat idea of a funtion of sev-eral variables an have \several" be as manyas you like and \variables" be anything youhoose. Another plae where we enounter lotsof funtions of \several" variables is in ther-modynamis, but for the time being we willfous our attention on the three spatial vari-ables x (left-right), y (bak-forth) and z (up-down).How an we takle derivatives of this funtion?Partial DerivativesWell, we do the obvious: we say, \Hold allthe other variables �xed exept [for instane℄x and then treat F (x; y; z) as a funtion onlyof x, with y and z as �xed parameters." Thenwe know just how to de�ne the derivative withrespet to x. The short name for this deriva-tive is the partial derivative with respetto x, written symbolially�F�xwhere the fat that there are other variablesbeing held �xed is implied by the use of thesymbol � instead of just d.Similarly for �F�y and �F�z .

OperatorsThe foregoing desription applies for any fun-tion of (x; y; z); the onept of \taking partialderivatives" is independent of what funtionwe are taking the derivatives of. It is thereforepratial to learn to think of��x and ��y and ��yas operators that an be applied to anyfuntion (like F ). Put the operator on the leftof a funtion, perform the operation and youget a partial derivative | a new funtion of(x; y; z). In general, suh \operators" hangeone funtion into another. Physis is loadedwith operators like these.The Gradient OperatorThe gradient operator is a vetor operator,written ~r and alled \grad" or \del." It isde�ned (in Cartesian oordinates x; y; z) as1~r � {̂ ��x + |̂ ��y + k̂ ��zand an be applied diretly to any salar fun-tion of (x; y; z) | say, �(x; y; z) | to turn itinto a vetor funtion, ~r� = {̂���x + |̂���y +k̂ ���z .Gradients of Salar FuntionsIt is instrutive to work up to this \one dimen-sion at a time." For simpliity we will stik tousing � as the symbol for the funtion of whihwe are taking derivatives.The Gradient in One Dimension1I am using the onventional notation for {̂; |̂; k̂ as theunit vetors in the x; y; z diretions, respetively.



2Let the dimension be x. Then we have no \ex-tra" variables to hold onstant and the gradi-ent of �(x) is nothing but {̂d�dx . We an illus-trate the \meaning" of ~r� by an example: let�(x) be the mass of an objet times the a-eleration of gravity times the height h of ahill at horizontal position x. That is, �(x) isthe gravitational potential energy of the ob-jet when it is at horizontal position x. Then~r� = {̂ d�dx = {̂ ddx(mgh) = mg  dhdx! {̂:Note that dhdx is the slope of the hill and � ~r�is the horizontal omponent of the net fore(gravity plus the normal fore from the hill'ssurfae) on the objet. That is, � ~r� is thedownhill fore.The Gradient in Two DimensionsIn the previous example we disregarded thefat that most hills extend in two horizontaldiretions, say x = East and y = North. [If westik to small distanes we won't notie theurvature of the Earth's surfae.℄ In this asethere are two omponents to the slope: theEastward slope �h�x and the Northward slope�h�y . The former is a measure of how steep thehill will seem if you head due East and thelatter is a measure of how steep it will seem ifyou head due North. If you put these togetherto form a vetor \steepness" (gradient)~rh = {̂ �h�x + |̂ �h�ythen the vetor ~rh points uphill | i.e. inthe diretion of the steepest asent. Moreover,the gravitational potential energy � = mgh asbefore [only now � is a funtion of 2 variables,�(x; y)℄ so that � ~r� is one again the down-hill fore on the objet.The Gradient in Three DimensionsIf the potential � is a funtion of 3 variables,�(x; y; z) [suh as the three spatial oordinates

x, y and z | in whih ase we an write it alittle more ompatly as �(~r) where ~r � x{̂ +y|̂ + zk̂, the vetor distane from the originof our oordinate system to the point in spaewhere � is being evaluated℄, then it is a littlemore diÆult to make up a \hill" analogy |try imagining a topographial map in the formof a 3-dimensional hologram where instead oflines of onstant altitude the \equipotentials"are surfaes of onstant �. (This is just whatPhysiists do piture!) Fortunately the mathextends easily to 3 dimensions (or any largernumber, if that has any meaning in the ontextwe hoose).In general, any time there is a potential energyfuntion �(~r) we an immediately write downthe fore ~F assoiated with it as~F � � ~r�A perfetly analogous expression holds for theeletri �eld ~E [fore per unit harge℄ in termsof the eletrostati potential � [potential en-ergy per unit harge℄:2~E � � ~r�The Gradient in N DimensionsAlthough we won't be needing to go beyond3 dimensions very often in Physis, you mightwant to borrow this metaphor for appliationin other realms of human endeavour wherethere are more than 3 variables of whih yoursalar �eld is a funtion. You ould have � bea measure of happiness, for instane [though itis hard to take reliable measurements on suh asubjetive quantity℄; then � might be a fun-tion of lots of fators, suh as x1 = freedomfrom violene, x2 = freedom from hunger, x3= freedom from poverty, x4 = freedom from2I know, I know, I am using the � symbol for two dif-ferent things. Well, I said it was the preferred symbol fora salar �eld, so you shouldn't be surprised to see it \rey-led" many times. This won't be the last!



3oppression, and so on.3 Note that with an ar-bitrary number of variables we get away fromthinking up di�erent names for eah one andjust all the ith variable \xi."Then we an de�ne the gradient in N di-mensions as~r� = {̂1 ���x1 + {̂2 ���x2 + � � � + {̂N ���xNor ~r� = NXi=1 {̂i ���xiwhere {̂i is a unit vetor in the xi diretion.Divergene of a Vetor FieldIf we form the salar (\dot") produt of ~rwith a vetor funtion ~A(x; y; z) we get asalar result alled the divergene of ~A:div~A � ~r � ~A � �Ax�x + �Ay�y + �Az�zThis name is atually quite mnemoni: thedivergene of a vetor �eld is a loal mea-sure of its \outgoingness" | i.e. the extentto whih there is more exiting an in�nitesimalregion of spae than entering it. If the �eld isrepresented as \ux lines" of some indestru-tible \stu�" being emitted by \soures" andabsorbed by \sinks," then a nonzero diver-gene at some point means there must be asoure or sink at that position. That is to say,\What leaves a region is no longer in it."For example, onsider the divergene of theurrent density ~J , whih desribes theflux of a onserved quantity suh as ele-tri harge Q. (Mass, as in the urrent of ariver, would do just as well.)3These are rotten examples, of ourse | the �rst prati-al riterion for the variables of whih any � is a funtion isthat they should be linearly independent [i.e. orthogonal ℄so that the dependene on one is not all mixed up with thedependene on another!

Figure 1 Flux into and out of a volume elementdV = dx dy dz.To make this as easy as possible, let's piturea ubial volume element dV = dx dy dz. Ingeneral, ~J will (like any vetor) have threeomponents (Jx; Jy; Jz), eah of whih may bea funtion of position (x; y; z). If we take thelower left front orner of the ube to have oor-dinates (x; y; z) then the upper right bak or-ner has oordinates (x + dx; y + dy; z + dz).Let's onentrate �rst on Jz and how it de-pends on z.It may not depend on z at all, of ourse. In thisase, the amount of Q oming into the ubethrough the bottom surfae (per unit time)will be the same as the amount of Q goingout through the top surfae and there will beno net gain or loss of Q in the volume | atleast not due to Jz.If Jz is bigger at the top, however, there willbe a net loss of Q within the volume dV dueto the \divergene" of Jz. Let's see how muh:the di�erene between Jz(z) at the bottom andJz(z + dz) at the top is, by de�nition, dJz =��Jz�z � dz. The ux is over the same area at topand bottom, namely dx dy, so the total rate ofloss ofQ due to the z-dependene of Jz is given



4by_Qz = �dx dy �Jz�z ! dz = � �Jz�z ! dx dy dzor _Q = � �Jz�z ! dV :A perfetly analogous argument holds for thex-dependene if Jx and the y-dependene ofJy, giving a total rate of hange of Q_Q = � �Jx�x + �Jy�y + �Jz�z ! dVor _Q = � ~r � ~J dVThe total amount of Q in our volume elementdV at a given instant is just � dV , of ourse,so the rate of hange of the enlosed Q is just_Q = _� dVwhih means that we an write���t dV = � ~r � ~J dVor, just anelling out the ommon fator dVon both sides of the equation,���t = � ~r � ~Jwhih is the ompat and elegant \di�erentialform" of the Equation of Continuity.This equation tells us that the \Q souriness"of eah point in spae is given by the degree towhih ux \lines" of ~J tend to radiate awayfrom that point more than they onverge to-ward that point | namely, the divergeneof ~J at the point in question. This esoteri-looking mathematial expression is, remem-ber, just a formal way of expressing our origi-nal dumb tautology!

Curl of a Vetor FieldIf we form the vetor (\ross") produt of ~rwith a vetor funtion ~A(x; y; z) we get a ve-tor result alled the url of ~A:url ~A � ~r� ~A � {̂ �Az�y � �Ay�z !+ |̂ �Ax�z � �Az�x !+ k̂ �Ay�x � �Ax�y !This is a lot harder to visualize than the di-vergene, but not impossible. Suppose youare in a boat in a huge river (or Pass) wherethe urrent ows mainly in the x diretion butwhere the speed of the urrent (ux of water)varies with y. Then if we all the urrent ~J ,we have a nonzero value for the derivative �Jx�y ,whih you will reognize as one of the termsin the formula for ~r � ~J . What does thisimply? Well, if you are sitting in the boat,moving with the urrent, it means the urrenton your port side moves faster | i.e. forwardrelative to the boat | and the urrent on yourstarboard side moves slower | i.e. bakwardrelative to the boat | and this implies a ir-ulation of the water around the boat | i.e.a whirlpool! So ~r� ~J is a measure of the lo-al \swirliness" of the urrent ~J , whih means\url" is not a bad name after all!The Laplaian OperatorIf we form the salar (\dot") produt of ~rwith itself we get a salar seond derivativeoperator alled the Laplaian:~r � ~r � r2 � �2�x2 + �2�y2 + �2�z2What does the r2 operator \mean?" Itis the three-dimensional generalization of theone-dimensional urvature operator d2=dx2.



5Consider the familiar one-dimensional fun-tion h(x) where h is the height of a hillat horizontal position x. Then dh=dx is theslope of the hill and d2h=dx2 is its urva-ture (the rate of hange of the slope with po-sition). This property appears in every formof the wave equation. In three dimensions,a nie visualization is harder (there is no ex-tra dimension \into whih to urve") but r2�represents the equivalent property of a salarfuntion �(x; y; z).Gauss' LawThe Equation of Continuity (see above)desribes the onservation of \atual physialstu�" entering or leaving an in�nitesimal re-gion of spae dV . For example, ~J may be theurrent density (harge ow per unit time perunit area normal to the diretion of ow) inwhih ase � is the harge density (harge perunit volume); in that example the onserved\stu�" is eletri harge itself. Many otherexamples exist, suh as fluid dynamis (inwhih mass is the onserved stu�) or heatflow (in whih energy is the onserved quan-tity). In Eletromagnetism, however, wedeal not only with the onservation of hargebut also with the ontinuity of abstrat ve-tor �elds like ~E and ~B. In order to visualize~E, we have developed the notion of \eletri�eld lines" that annot be broken exept wherethey originate (from positive harges) and ter-minate (on negative harges). [This desrip-tion only holds for stati eletri �elds; whenthings move or otherwise hange with time,things get a lot more ompliated . . . and in-teresting!℄ Thus a positive harge is a \soureof eletri �eld lines" and a negative harge isa \sink" | the harges themselves stay put,but the lines of ~E diverge out of or into them.You an probably see where this is heading.Gauss' Law states that the net ux of eletri�eld \lines" out of a losed surfae S is pro-portional to the net eletri harge enlosed

within that surfae. The onstant of propor-tionality depends on whih system of units oneis using; in SI units it is 1=�Æ. In mathematialshorthand, this reads�Æ ZZS~E � d~A = Qenl :Realling our earlier disussion of diver-gene, we an think of ~E as being a sort ofux density of onserved \stu�" emitted bypositive eletri harges. Remember, in thisase the harges themselves do not go any-where; they simply emit (or absorb) the ele-tri �eld \lines" whih emerge from (or dis-appear into) the enlosed region. The rate ofgeneration of this \stu�" is Qenl=�Æ. We anthen apply Gauss' Law to an in�nitesimalvolume element using Fig. 1 with �Æ ~E in plaeof ~J . Exept for the \fudge fator" �Æ and thereplaement of _Q by Qenl, the same argumentsused to derive the Equation of Continu-ity lead in this ase to a formula relating thedivergene of ~E to the eletri harge density� at any point in spae, namely~r � ~E = 1�Æ � :This is the di�erential form of Gauss' Law.Poisson and LaplaeEven in its di�erential form, Gauss' Law isa little triky to solve analytially, sine it isa vetor di�erential equation. Generally wehave an easier time solving salar di�eren-tial equations, even though they may involvehigher order partial derivatives. Fortunately,we an onvert the former into the latter: re-all that the vetor eletri �eld an always beobtained from the salar eletrostati potentialusing ~E � � ~r� :Thus div~E � ~r � ~E = � ~r � ~r� orr2� = � 1�Æ � :



6This relation is known as Poisson's equa-tion. Its simpli�ed ousin, Laplae's equa-tion, applies in regions of spae where thereare no free harges:r2� = 0 :Eah of these equations �nds muh use in realeletrostatis problems. Advaned students ofeletromagnetism learn many types of fun-tions that satisfy Laplae's equation, withdi�erent symmetries; sine a ondutor is al-ways an equipotential (every point in a givenondutor must have the same �, otherwisethere would be an eletri �eld in the on-dutor that would ause harges to move un-til they anelled out the di�erenes in �),empty regions surrounded by ondutors ofertain shapes must have � with a spatial de-pendene satisfying those boundary ondi-tions as well as Laplae's equation. Onean often write down a ompliated-lookingformula for � almost by inspetion, using thisfavourite method of Physiists and Mathe-matiians, namely . . . knowing the an-swer.


