
15.1. RANDOM CHANCE 1
Thermal Physis1\A theory is the more impressive thegreater the simpliity of its premises, themore di�erent kinds of things it relates,and the more extended its area of applia-bility. Therefore the deep impression thatlassial thermodynamis made upon me.It is the only physial theory of universalontent whih I am onvined will never beoverthrown, within the framework of appli-ability of its basi onepts." | A. Ein-stein\But although, as a matter of history, sta-tistial mehanis owes its origin to inves-tigations in thermodynamis, it seems em-inently worthy of an independent develop-ment, both on aount of the elegane andsimpliity of its priniples, and beause ityields new results and plaes old truths ina new light in departments quite outside ofthermodynamis." | J.W. GibbsWe have seen how a few simple laws (in partiularNewton's seond law) an be ombined with not-too-sophistiated mathematis to solve a great vari-ety of problems | problems whih eventually are per-eived to fall into a number of reasonably well-de�nedategories by virtue of the mathematial manipula-tions appropriate to eah | and that those distintlasses of mathematial manipulations eventually be-ome familiar enough to aquire familiar names of theirown, suh as \onservation of impulse and momentum"or \onservation of work and energy" or \onservationof torque and angular momentum." This emergeneof new tait paradigms was the great oneptual giftof the Newtonian revolution. But the most profoundpratial impat of the new sienes on soiety amein the form of the Industrial Revolution, whih wasmade possible only when the siene of mehanis wasombined with an understanding of how to extrat us-able mehanial work from that most mysterious ofall forms of energy, heat.Historially, heat was reognized as a form of energyand temperature was understood in terms of its qual-itative properties long before anyone truly understoodwhat either of these terms atually meant in any rig-orous mirosopi model of matter. The link between1I have \borrowed" the notation, general approah, ba-si derivations and most of the quotations shown here fromthe exellent textbook of the same name by Kittel & Kroe-mer, who therefore deserve all the redit (and none of theblame) for the abbreviated version displayed before you.

Newton's mehanis and the thermodynamis of Jouleand Kelvin was forged by Boltzmann long after steampower had hanged the world, and a simple under-standing of many of the �ner points of Boltzmann'sstatistial mehanis had to wait even longer untilQuantum Mehanis provided a natural explanationfor the requisite fat that the number of possible statesof any system, while huge, is not in�nite, and thatsmall, simple systems are in fat restrited to a ount-able number of disrete \stationary states." In thisdrama Albert Einstein was to play a rather importantrole.The following oneptual outline of Statistial Mehan-is is designed to make the subjet as lear as possible,not to be historially aurate or even fair. Havingmade this hoie, however, I hope to be able to displaythe essene of the most astonishing produt of humanSiene without undue rigamarole, and perhaps to on-vey the wonder that arises from a deeper and morefundamental understanding.15.1 Random ChaneWith so many mirales to hoose from, where do Iget o� delaring Statistial Mehanis to be \the mostastonishing produt of human Siene?" This is ofourse a personal opinion, but it is one shared by manyphysiists | perhaps even a majority. The astonish-ment is a result of the inredible preision with whihone an predit the outome of experiments on veryompliated systems (the more ompliated, the morepreise!) based on the fundamental assumption ofstatistial mehanis:A system in thermal equilibrium is a prioriequally likely to be found in any one of thefully-spei�ed states aessible to it.This seemingly trivial statement ontains a ouple ofringers: the word \aessible" means, for instane,that the total \internal" energy of the system | whihis always written U | i.e. the sum of the kineti andpotential energies of all the little partiles and wavesthat make up the big system | is �xed. There aremany ways to divide up that energy, giving more toone partile and less to another, and the fundamen-tal assumption says that they are all equally likely;but in every ase the energy must add up to the sameU . This an obviously be very onfusing, but fortu-nately we rarely attempt to ount up the possibilitieson our �ngers!It is the assumption itself that is so amazing. How ananything but total ignorane result from the assump-tion that we know nothing at all about the minute



2biases a real system might have for one state over an-other? More emphatially, how an suh an outra-geous assumption lead to anything but wrong predi-tions? It amounts to a pronounement that Natureruns a perfetly honest asino, in whih every possibleombination of the roll of the die is atually equallylikely! And yet every predition derived from this as-sumption has been demonstrated to be aurate to thebest preision our measurements an provide. And theonsequenes are numerous indeed!15.2 Counting the WaysIf we aept the fundamental assumption at faevalue, then it is easy to alulate the probability of�nding the equilibrated system in any given fully spe-i�ed state: if the state is not aessible [e.g. if it takesmore energy U than we have at our disposal℄ thenthe probability is zero; if it is aessible, then its prob-ability is just 1
 , where 
 is the total number ofaessible states. The �rst step is therefore to alulate
. In general this an get diÆult, but we an hoosea few simple examples to illustrate how the alulationgoes.15.2.1 Conditional MultipliitySuppose we have a jar full of pennies, say N pen-nies, all of whih have had unique numbers paintedon them so that they an be easily distinguished fromeah other. Now suppose we shake it thoroughly anddump it out on a nie at table; eah penny falls ei-ther \heads" or \tails" with equal a priori probability.The probability of penny #1 being \heads" is 12 . Theprobability of penny #1 being \heads" and penny #2being \tails" is 12 � 12 = 14 . The probability of penny#1 being \heads" and penny #2 being \tails" andpenny #3 being \tails" is 12 � 12 � 12 = 18 . And soon. If the pennies are all \statistially independent"(i.e. how one penny falls has no inuene on the otherpennies), the probability of any spei� arrangementof spei� pennies falling spei� ways [what we all afully spei�ed state of the system℄ is�12�N = 12Nwhere N is the total number of pennies.Unfortunately, this is not what we want to know. Wedon't are whih pennies fall whih way,2 only howmany of eah. This is what we all a partially spei�ed2In the present ase, we have a hoie of whether totreat the pennies as \indistinguishable" or not. No two

or partially onstrained state of the system. What wereally want to know is the number of ways we an getn heads and (N � n) tails.3Suppose we speify that n pennies are \heads" andthe remaining (N � n) are \tails." The number ofways we an do this is what we all 
(n;N), themultipliity funtion for the partially onstrained statespei�ed only by n and N . Here's how we alulate
(n;N): the number of di�erent ways we an rear-range all N oins isN ! � N � (N � 1) � (N � 2) � � � 3 � 2 � 1beause we have N hoies of whih oin will be �rst,then we have (N�1) hoies of whih oin will be se-ond, then we have (N � 2) hoies of whih oin willbe third, and so on. The total number of hoies is theprodut of the numbers of hoies at eah step. How-ever, we have overounted by the number of di�erentways the heads an be rearranged among themselves,whih by the same argument is n!, and by the number(N � n)! of ways the tails an be rearranged amongthemselves. Therefore the total number of distinguish-able ombinations that all give n heads and (N �n)tails is 
(n;N) = N !n! � (N � n)! (1)Another example would be a parking lot with Nspaes in whih n ars are parked. The number ofdi�erent ways we an label the spaes is N ! but the noupied spaes an be rearranged amongst themselvesn! di�erent ways and the (N � n) empty spaes anbe rearranged (N � n)! di�erent ways without alter-ing the partial onstraint [namely, that only n of thespaes are �lled℄.4 Then Eq. (1) desribes the num-ber of di�erent ways the ars an be parked withouthanging the total number of parked ars.pennies are really indistinguishable, of ourse; even with-out our painted-on numbers, eah one has unique sratheson its surfae and was rystallized from the molten statein a unique mirosopi pattern. We ould tell one fromanother; we just don't are, for irumstantial reasons.In quantum mehanis, however, you will enounter theonept of elementary partiles [e.g. eletrons℄ whih areso unompliated that they truly are indistinguishable[i.e. perfetly idential℄; moreover, statistial mehan-is provides a means of atually testing to see whether theyare really absolutely indistinguishable or just very similar!3It might be that we get to keep all the pennies thatome up heads, but for every penny that omes up tails wehave to hip in another penny of our own. In that ase ourpro�t would be n� (N � n) = 2n�N ents.4If you were the parking lot owner and were harging $1per spae [heap!℄, your pro�t would be $n. I keep omingbak to monetary examples | I guess ash is the soialanalogue of energy in this ontext.



15.2. COUNTING THE WAYS 3The Binomial DistributionTo generalize, we talk about a system of N partiles,5eah of whih an only be in one of two possible single-partile states. A fully spei�ed N -partile state ofthe system would have the single-partile state of eahindividual partile spei�ed, and is not very interest-ing. The partially spei�ed N -partile state with nof the partiles in the �rst single-partile state and theremaining (N�n) partiles in the other single-partilestate an be realized in 
(n;N) di�erent ways, with
(n;N) given by Eq. (1). Beause there are only twopossible single-partile states, this ase of 
 is alledthe binomial distribution. It is plotted6 in Fig. 15.1for several values of N .Note what happens to 
(n;N) as N gets bigger: thepeak value, whih always ours at npeak = 12N , getsvery large [in the plots it is ompensated by dividingby 2N , whih is a big number for large N ℄ and thewidth of the distribution grows steadily narrower |i.e. values of nN far away from the peak get less andless likely as N inreases. The width is in fat thestandard deviation7 of a hypothetial random sampleof n, and is proportional to pN . The frationalwidth (expressed as a fration of the total range of n,namely N) is therefore proportional to pNN = 1pN :Frational Width / 1pN (2)whih means that for really large N , like N = 1020,the binomial distribution will get really narrow, like apart in 1010, in terms of the fration of the average.
5The term \partile" is [in this usage℄ meant to be asvague as possible, just like \system:" the partiles are \re-ally simple things that are all very muh alike" and thesystem is \a bunh of partiles taken together."6Atually what is plotted in Fig. 15.1 is the probabilityfuntionP(n) � 12N � 
(n;N) = 12N � N !n! (N � n)!vs. nN , as explained in the aption. Otherwise it wouldbe diÆult to put more than one plot on the same graph,as the peak value of 
(n;N) gets very large very fast asN inreases!7Reall your Physis Lab training on measurement!

Figure 15.1 The normalized binomial distribution forseveral values of N . In order to put several ases ona single graph, the horizontal axis shows n divided byits maximum possible value N [giving the fration ofthe total range℄ and the binomial oeÆient 
(n;N)given by Eq. (1) has been divided by the total number ofpossible fully spei�ed N -partile states, 2N , to give the\normalized" probability | i.e. if we add up the valuesof 
(n;N)=2N for all possible n from 0 to N , thetotal probability must be 1. [This is eminently sensible;the probability of n having some value is surely equalto unity!℄15.2.2 Entropy\If we wish to �nd in rational mehanisan a priori foundation for the priniples ofthermodynamis, we must seek mehanialde�nitions of temperature and entropy."| J.W. GibbsThe funtion 
(n;N) is alled the multipliityfuntion for the partially spei�ed system. If Nand n get to be large numbers (whih is usually thease when we are talking about things like the num-bers of eletrons in a rystal), 
(n;N) an get reallyhuge.8 It is so huge, in fat, that it beomes very dif-�ult to ope with, and we do what one usually doeswith ungainly huge numbers to make them manage-able: we take its logarithm. We de�ne the [natural℄logarithm of 
 to be the entropy �:� � ln
 (3)8A good estimate of the size of N ! for large N isgiven by Stirling's approximation:N ! � p2�N �NN � e�N



4Let's say that again: the entropy � is the naturallogarithm of the multipliity funtion 
 | i.e.of the number of di�erent ways we an get the partiallyspei�ed onditions in this ase de�ned by n.Is this all there is to the most fearsome, the most ar-ane, the most inomprehensible quantity of thermo-dynamis? Yep. Sorry to disappoint. That's it. Ofourse, we haven't played around with � yet to seewhat it might be good for | this an get very inter-esting | nor have I told this story in an historiallyaurate sequene; the onept of entropy preededthis de�nition in terms of \statistial mehanis" bymany years, during whih all of its properties were elu-idated and armies of thermal physiists and engineersbuilt the mahines that powered the Industrial Revo-lution. But understanding thermodynamis the old-fashioned way is hard! So we are taking the easy route| sort of like riding a heliopter to the top of Mt. Ever-est.15.3 Statistial MehanisBefore we go on, I need to move away from our ex-amples of binomial distributions and ast the generalproblem in terms more appropriate to Mehanis. Wean always go bak and generalize the paradigm9 butI will develop it along traditional lines.The owner of the parking lot desribed earlier is onlyinterested in the total number of ars parked beausethat number will determine his or her pro�t. In Me-hanis the \oin of the realm" is energy, whih wehave already said is always written U in thermalphysis. The abstrat problem in statistial me-hanis involves a omplex system with many pos-sible states, eah of whih has a ertain total energyU . This energy may be in the form of the sum ofthe kineti energies of all the atoms of a gas on�nedin a box of a ertain volume, or it may be the sumof all the vibrational energies of a rystal; there is noend of variety in the physial examples. But we arealways talking about the random, disordered energyof the system, the so-alled internal energy, when wetalk about U .Now, given a ertain amount of internal energy U ,the number of di�erent fully-spei�ed states of the sys-tem whose total internal energy is U [our partialonstraint℄ is the onditional multipliity funtion
(U). Taking the binomial distribution as our exam-ple again, we ould substitute rystal lattie sites for\parking plaes" and defets for \ars" [a defet ouldbe an atom out of plae, for instane℄. If it takes an9Count on it!

energy " to reate one defet, then the total internalenergy stored in n defets would be U = n ". Lots ofother examples an be imagined, but this one has theenergy U proportional to the number n of defets,so that you an see how the U -dependene of 
 inthis ase is just like the n-dependene of 
 before.So what?Well, things start to get interesting when you put twosuh systems in ontat so that U an ow freelybetween them through random statistial utuations.15.3.1 EnsemblesOne of the more esoteri notions in statistial me-hanis is the onept of an ensemble. This has noth-ing to do with musi; it goes bak to the original mean-ing of the Frenh word ensemble, whih is a olletionor gathering of things | muh more general and ab-strat than the small band of musiians we tend to vi-sualize. Anyway, the Statistial Mehanial \ensem-ble" is a olletion of all the possible fully spei�edstates of some system.Of ourse, there are di�erent kinds of ensembles de-pending upon what global onstraints are in e�et. Forinstane, the set of all possible states of an isolatedsystem S onsisting of a �xed number N of \par-tiles"10 with a well de�ned total energy U is alleda miroanonial ensemble. This is what we havebeen disussing so far.The set of all possible states of a system S onsistingof a �xed number N of partiles but in \thermalontat" with a muh, muh larger system R (alleda \heat reservoir") so that the energy U of S anow in or out of R at random is alled a anonialensemble.And the set of all possible states of a system S inontat with a reservoir R with whih it an exhangeboth energy (U) and partiles (N) is alled a grandanonial ensemble.If the utility of these onepts is less than obvious toyou, join the lub. I won't need to use them to de-rive the good stu� below, but now you will be ableto so� at pedants that pretend you an't understand\Stat Meh" unless you know what the various typesof Ensembles are.10Remember, a \partile" is meant to be an abstratonept in this ontext!



15.4. TEMPERATURE 515.4 Temperature\The general onnetion between energyand temperature may only be establishedby probability onsiderations. [Two sys-tems℄ are in statistial equilibrium whena transfer of energy does not inrease theprobability." | M. PlankWhen we put two systems S1 and S2 (with N1 andN2 partiles, respetively) into \thermal ontat" sothat the (onstant) total energy U = U1 + U2 anredistribute itself randomly between S1 and S2, theombined system S = S1+S2 will, we postulate, obeythe fundamental priniple | it is equally likelyto be found in any one of its aessible states. Thenumber of aessible states of S (partially onstrainedby the requirement that N1, N2 and U = U1 + U2remain onstant) is given by
 = 
1(U1) � 
2(U2) (4)where 
1 and 
2 are the multipliity funtionsfor S1 and S2 taken separately [both depend upontheir internal energies U1 and U2℄ and the over-all multipliity funtion is the produt of the two in-dividual multipliity funtions beause the rearrange-ments within one system are statistially independentof the rearrangements within the other.11 Sine theentropy is the log of the multipliity and the logof a produt is the sum of the logs, Eq. (4) an also bewritten � = �1(U1) + �2(U2) (5)| i.e. the entropy of the ombined system is the sumof the entropies of its two subsystems.15.4.1 The Most ProbableSo what? Well, here's the thing: we know that all a-essible states of the system are a priori equally likely;however, the number 
 of aessible states will de-pend upon the division of the total energy U betweenU1 and U2. Moreover, for a ertain value of U1 (andtherefore of U2 = U �U1), 
 will be a maximum |i.e. that value of U1 will make possible the largestvariety of equally likely random states of the systemand onsequently we will be more likely, on average, to11If I ip my oin one and you ip your oin twie, thereare 21 = 2 ways my ip an go [h, t℄ and 22 = 4 waysyour 2 ips an go [HH, HT, TH, TT℄; the total number ofways the ombination of your ips and mine an go [hHH,hHT, hTH, hTT, tHH, tHT, tTH, tTT℄ is 2� 4 = 8. Andso on.

�nd the system in states with that value of U1 thanin other states12 with di�erent values of U1.This speial value of U1 is alled (reasonably enough)the \most probable value" and is given the symbolirepresentation Û1.15.4.2 Criterion for EquilibriumIf our two systems are initially prepared separatelywith energies U1 and U2 other than the most proba-ble, what will happen when we bring them into ontatso that U an ow between them? The orret answeris, of ourse, \Everything that possibly an happen."But there is a bigger variety of possibilities for ertaingross distributions of energy than for others, and thismakes those gross distributions more likely than oth-ers. The overall entropy is thus a measure of this like-lihood. It seems inevitable that one will eventually feelompelled to anthropomorphize this behaviour and ex-press it as follows:13All random systems \like" variety and will\seek" arrangements that maximize it.In any ase, the tendeny of energy to ow from onesystem to the other will not be governed by equal-ization of either energy or entropy themselves, but byequalization of the rate of hange of entropy with en-ergy, ���U . To see why, suppose (for now) that moreenergy always gives more entropy. Then suppose thatthe entropy �1 of system S1 depends only weaklyon its energy U1, while the entropy �2 of system S2depends strongly on its energy U2. In mathematialterms, this readsSuppose ��1�U1 < ��2�U2Then removal of a small amount of energy dU fromS1 will derease its entropy �1, but not by as muhas the addition of that same energy dU to S2 willinrease its entropy �2. Thus the net entropy �1+�2will be inreased by the transfer of dU from S1 toS2. This argument is as onvoluted as it sounds, butit ontains the irreduible essene of the de�nition oftemperature, so don't let it slip by!12Nothing preludes �nding the system in states withother values of U1, of ourse. In fat we must do so some-times! Just less often.13Perhaps the onverse is atually true: human \wants"are atually manifestations of random proesses whose va-riety is greater in the diretion of pereived desire. I �ndthis speulation disturbing.



6The onverse also holds, so we an ombine this ideawith our previous statements about the system's \pref-erene" for higher entropy and make the followinglaim:Energy U will ow spontaneously from asystem with smaller ���U to a system withlarger ���U .If the rate of inrease of entropy with energy � ���U � isthe same for S1 and S2, then the ombined sys-tem will be \happy," the energy will stay where it is(on average) and a state of \thermal equilibrium" willprevail.Mathematial DerivationIs there any way to derive a formal (mathematial) ri-terion for the ondition of thermal equilibrium, start-ing from a hypothetial knowledge of 
1 as a funtionof U1 and 
2 as a funtion of U2 = U � U1? Ofourse! Why else would I be doing this? The thingabout a maximum of a funtion (or a minimum, forthat matter; either type of extremum obeys the samerule) is that the slope of the funtion must be zero atthe extremum. [Otherwise it would still have furtherup or down to go!℄ Sine the slope is given by thederivative, this readsCriterion for an extremum: �
�U1 = 0 (6)In this ase, sine 
 = 
1 � 
2, the produt rulefor derivatives gives�
�U1 = �
1�U1 � 
2 + 
1 � �
2�U1 = 0 (7)Now, 
2 is a funtion of U2, not U1; but we anget around that by using the hain rule,�
2�U1 = �
2�U2 � �U2�U1 �where U2 = U � U1 and U is a onstant, so�U2�U1 = �1We an therefore substitute ��
2�U2 for �
2�U1 inEq. (7): �
1�U1 � 
2 � 
1 � �
2�U2 = 0or �
1�U1 �
2 = 
1 � �
2�U2

If we now divide both sides by the produt 
1 � 
2,we get 1
1 � �
1�U1 = 1
2 � �
2�U2 : (8)Now we need to reall the property of the natural loga-rithm that was so endearing when we �rst enounteredit: ln(x) is the funtion whose derivative is the in-verse, ddx ln(x) = 1xand, by the hain rule,ddx ln(y) = 1y � dydxIn this ase \y" is 
 and \x" is U , so we have��U ln(
) = 1
 � �
�Uwhih means that Eq. (8) an be written��U1 ln(
1) = ��U2 ln(
2)But the logarithm of the multipliity funtion 
is the de�nition of the entropy �, so the equationan be simpli�ed further to read��1�U1 = ��2�U2 (9)where of ourse we are assuming that all the otherparameters (like N1 and N2) are held onstant.Note that we have reovered, by strit mathematialmethods, the same riterion ditated by ommon senseearlier. The only advantage of the formal derivation isthat it is rigourous, general and involves no question-able assumptions.1415.4.3 Thermal EquilibriumEq. (9) establishes the riterion for the most prob-able onfiguration | i.e. the value of Û1 forwhih the ombined systems have the maximum to-tal entropy, the maximum total number of aessiblestates and the highest probability. This also de�nesthe ondition of thermal equilibrium between thetwo systems | that is, if U1 = Û1, any ow of energyfrom S1 to S2 or bak will lower the number ofaessible states and will therefore be less likely thanthe on�guration15 with U1 = Û1. Therefore if we14Or, at least, none that are readily apparent. . . .15Note the distintion between the words on�gurationand state. The latter implies we speify everything aboutthe system | all the positions and veloities of all its par-tiles, et. | whereas the former refers only to some grossoverall marosopi spei�ation like the total energy orhow it is split up between two subsystems. A state isompletely spei�ed while a on�guration is only partlyspei�ed.



15.4. TEMPERATURE 7leave the systems alone and ome bak later, we willbe most likely to �nd them in the \on�guration" withÛ1 in system S1 and (U � Û1) in system S2.This seems like a pretty weak statement. Nothing er-tain, just a bias in favour of Û1 over other possiblevalues of U1 all the way from zero to U . That istrue. statistial mehanis has nothing whateverto say about what will happen, only about what islikely to happen | and how likely! However, whenthe numbers of partiles involved beome very large(and in Physis they do beome very large), the fra-tional width of the binomial distribution [Eq. (2)℄ be-omes very narrow, whih translates into a probabilitydistribution that is inredibly sharply peaked at Û1.As long as energy onservation is not violated, there isnothing but luk to prevent all the air moleules in thisroom from vaating the region around my head until Iexpire from asphyxiation. However, I trust my luk inthis. A quotation from Boltzmann on�rms that I amin distinguished ompany:\One should not imagine that two gases ina 0.1 liter ontainer, initially unmixed, willmix, then again after a few days separate,then mix again, and so forth. On the on-trary, one �nds . . . that not until a timeenormously long ompared to 101010 yearswill there be any notieable unmixing ofthe gases. One may reognize that this ispratially equivalent to never. . . ."| L. Boltzmann15.4.4 Inverse TemperatureWhat do we expet to happen if the systems are outof equilibrium? For instane, suppose system S1 hasan energy U1 < Û1. What will random hane \do"to the two systems? Well, a while later it would bemore likely to �nd system S1 with the energy Û1again. That is, energy would tend to \spontaneouslyow" from system S2 into system S1 to maximizethe total entropy.16 Now stop and think: is there anyfamiliar, everyday property of physial objets thatgoverns whether or not internal energy (heat) willspontaneously ow from one to another? Of ourse!Every hild who has touhed a hot stove knows thatheat ows spontaneously from a hotter objet [like astove℄ to a ooler objet [like a �nger℄. We even havea name for the quantitative measure of \hotness" |we all it temperature.16This is the same as maximizing the probability, butfrom now on I want to use the terminology \maximizingthe entropy."

Going bak to Eq. (9), we have a mathematial ex-pression for the riterion for thermal equilibrium,whose familiar everyday-life equivalent is to say thatthe two systems have the same temperature. There-fore we have a ompelling motivation to assoiate thequantity ���U for a given system with the tempera-ture of that system; then the equation reads the sameas our intuition. The only problem is that we expetheat to ow from a system at high temperature to asystem at low temperature; let's hek to see what ispredited by the mathematis.17 Let's suppose thatfor some initial value of U1 < Û1 we have��1�U1 > ��2�U2 :Then adding a little extra energy dU to S1 willinrease �1 by more than we derease �2 by sub-trating the same dU from S2 [whih we must do,beause the total energy is onserved℄. So the totalentropy will inrease if we move a little energy fromthe system with a smaller ���U to the system with alarger ���U . The region of smaller ���U must thereforebe hotter and the region of larger ���U must be ooler.This is the opposite of what we expet of tempera-ture, so we do the obvious: we de�ne ���U to be theinverse temperature of a system:���U � 1� (10)where (at last) � is the temperature of the systemin question. We an now express Eq. (9) in the formthat agrees with our intuition:Condition of thermal equilibrium:�1 = �2 (11)| i.e. if the temperatures of the two systems are thesame, then they will be in thermal equilibrium andeverything will be most likely to stay pretty muh asit is.As you an see, temperature is not quite suh asimple or obvious onept as we may have been led tobelieve! But now we have a universal, rigorous andvalid de�nition of temperature. Let's see what use wean make of it.15.4.5 Units & DimensionsI have borrowed from several authors the onvention ofexpressing the entropy � in expliitly dimensionless17We have already done this one, but it bears repeating!To avoid omplete redundany, this time we will reverse theorder of hot and old.



8form [the logarithm of a pure number is another purenumber℄. By the same token, the simple de�nition oftemperature � given by Eq. (10) automatiallygives � dimensions of energy, just like U . Thus �an be measured in joules or ergs or other more eso-teri units like eletron-volts; but we are austomedto measuring temperature in other, less \physial"units alled degrees. What gives?The story of how temperature units got invented is fas-inating and sometimes hilarious; suÆe it (for now) tosay that these units were invented before anyone knewwhat temperature really was!18 There are two typesof \degrees" in ommon use: Fahrenheit degrees19 andCelsius degrees (written ÆC) whih are moderately sen-sible in that the interval between the freezing point ofwater (0ÆC) and the boiling point of water (100ÆC) isdivided up into 100 equal \degrees" [hene the alter-nate name \Centigrade"℄. However, in Physis thereare only one kind of \degrees" in whih we measuretemperature: degrees absolute or \Kelvin"20 whih arewritten just \K" without any Æ symbol. One K is thesame size as one ÆC, but the zero of the Kelvin saleis at absolute zero, the oldest temperature possible,whih is itself an interesting onept. The freezingtemperature of water is at 273.15 K, so to onvert ÆCinto K you just add 273.15 degrees. Temperature mea-sured in K is always written T .What relationship does � bear to T ? The latter hadbeen invented long before the development of Statisti-al Mehanis and the explanation of what tempera-ture really was; but these lumsy units never go awayone people have gotten used to them. The two typesof units must, of ourse, di�er by some onstant on-version fator. The fator in this ase is kB, Boltz-18Well, to be fair, people had a pretty good workingknowledge of the properties of temperature; they justdidn't have a de�nition of temperature in terms of nuts-and-bolts mehanis, like Eq. (10).19These silly units were invented by an instrument makeralled Fahrenheit [1686-1736℄ who was selling thermome-ters to meteorologists. He piked body temperature [ahandy referene, onstant to the preision of his measure-ments℄ for one \�duial" point and for the other he pikedthe freezing point of saturated salt water, presumably fromthe North Sea. Why not pure water? Well, he didn't likenegative temperatures [neither do we, but he didn't go farenough!℄ so he piked a temperature that was, for a me-teorologist, as old as was worth measuring. [Below that,presumably, it was just \damn old!"℄ Then he (sensibly)divided up the interval between these two �duials into96 = 64+32 equal \degrees" [an you see why this is a prag-mati hoie for the number of divisions?℄ and voil�a! hehad the Fahrenheit temperature sale, on whih pure wa-ter freezes at 32ÆF and boils at 212ÆF. A good system toforget, if you an.20Named after Thomson, Lord Kelvin [1852℄, a pioneerof thermodynamis.

mann's onstant:� � kB T wherekB � 1:38066� 10�23 J/K (12)By the same token, the \onventional entropy" S de-�ned by the relationship1T = �S�U (13)must di�er from our dimensionless version � by thesame onversion fator:S � kB � (14)This equivalene ompletes the de�nition of the mys-terious entities of lassial thermodynamis in terms ofthe simple \mehanial" paradigms of Statistial Me-hanis. I will ontinue to use � and � here.15.4.6 A Model SystemSome of the more peuliar properties of temperaturean be illustrated by a simple example:Certain partiles suh as eletrons have \spin 12" whih(it turns out) prevents their spins from having any ori-entation in a magneti �eld ~B other than parallel tothe �eld (\spin up") or antiparallel to it (\spin down").Beause eah eletron has a magneti moment ~� (sortof like a tiny ompass needle) lined up along its spindiretion, there is an energy " = �~� � ~B assoiatedwith its orientation in the �eld.21 For a \spin up" ele-tron the energy is "" = +�B and for a \spin down"eletron the energy is "# = ��B.Consider a system onsisting of N eletrons in a mag-neti �eld and neglet all other interations, so that thetotal energy U of the system is given byU = (N" �N#) �Bwhere N" is the number of eletrons with spin up andN# is the number of eletrons with spin down. SineN# = N �N", this meansU = (2N" �N) �B orN" = N2 + U2�B (15)| that is, N" and U are basially the same thingexept for a ouple of simple onstants. As N" goesfrom 0 to N , U goes from �N�B to +N�B.21The rate of hange of this energy with the angle be-tween the �eld and the ompass needle is in fat the torquewhih tries to align the ompass in the Earth's magneti�eld, an e�et of onsiderable pratial value.



15.5. TIME & TEMPERATURE 9This system is another example of the binomial dis-tribution whose multipliity funtion was given byEq. (1), with N" in plae of n. This an be easilyonverted to 
(U). The entropy �(U) is then justthe logarithm of 
(U), as usual. The result is plottedin the top frame of Fig. 15.2 as a funtion of energy.Note that the entropy has a maximum value for equalnumbers of spins up and down | i.e. for zero energy.There must be some suh peak in �(U) wheneverthe energy is bounded above | i.e. whenever thereis a maximum possible energy that an be stored inthe system. Suh situations do our [this is a \real"example!℄ but they are rare; usually the system willhold as muh energy as you want.

Figure 15.2 Entropy, inverse temperature and tempera-ture of a system onsisting of N = 32 spin- 12 partiles(with magneti moments �) in a magneti �eld B.Negative TemperatureThe \boundedness" of U and the onsequent \peaked-ness" of �(U) have some interesting onsequenes:

the slope of �(U) [whih, by Eq. (10), de�nes theinverse temperature℄ dereases steadily and smoothlyover the entire range of U from �N�B to +N�B,going through zero at U = 0 and beoming negativefor positive energies. This auses the temperature it-self to diverge toward +1 as U ! 0 from the leftand toward �1 as U ! 0 from the right. Suhdisontinuous behaviour is disonerting, but it is onlythe result of our insistene upon thinking of � as \fun-damental" when in fat it is 1=� that most sensiblyde�nes how systems behave. Unfortunately, it is toolate to get thermometers alibrated in inverse temper-ature and get used to thinking of objets with lowerinverse temperature as being hotter. So we have to livewith some pretty odd properties of \temperature."Consider, for instane, the whole notion of negativetemperature, whih is atually exhibited by this sys-tem and an atually be prepared in the laboratory.22What is the behaviour of a system with a negative tem-perature? Our physial intuition, whih in this ase istrustworthy, delares that one system is hotter thananother if, when the two are plaed in thermal on-tat, heat energy spontaneously ows out of the �rstinto the seond. I will leave it as an exerise for thereader to deide whih is most hot | in�nite positivetemperature or �nite negative temperature.15.5 Time & TemperatureLet's do the following Gedankenexperiment : Suppose Ishow you a movie of a swimming pool full of waves andsplashes; suddenly (in the movie) all the waves ometogether and squirt a diver out of the pool. She iesgraefully through the air to land on the diving boardwhile the pool's surfae has miraulously returned tomirror smoothness. What is wrong with this piture?Wait! Before you answer, you also get the followingmovie: A box full of 100 blak and 100 white marblessits on a table; the marbles are arranged randomly. Ananonymous assistant piks up the box, loses the lid,shakes the box for a while, puts it down and opens thelid. All the white marbles are now on the left side andall the blak marbles are on the right side. Why doyou keep thinking there is a problem? Try this: Thesame box, the same assistant, the same story; exeptthis time there are only 4 marbles, two of eah. Notso sure, hmmm? How about 2 marbles, one blak andone white? Now we an't tell a thing about whetherthe movie is being shown forward or bakward, right?What is going on here?Our onept of the \arrow of time" is somehow bound22[by reversing the diretion of the magneti �eld beforethe spins have a hane to reat℄



10up with statistial mehanis and is alarmingly fragile| we an lose our bearings ompletely just by on-�ning our attention to too small a system! As we willsee later, the \fundamental" laws governing the miro-sopi interations of matter will be no help at all inlarifying this mystery.15.6 Boltzmann's DistributionIn de�ning the onept of temperature, we have exam-ined the behaviour of systems in thermal ontat (i.e.able to exhange energy bak and forth) when the to-tal energy U is �xed. In the real world, however, itis not often that we know the total energy of an arbi-trary system; there is no \energometer" that we anstik into a system and read o� its energy! What weoften do know about a system it its temperature. To�nd this out, all we have to do is stik a alibrated ther-mometer into the system and wait until equilibrium isestablished between the thermometer and the system.Then we read its temperature o� the thermometer. Sowhat an we say about a small system23 S (like asingle moleule) in thermal equilibrium with a largesystem (whih we usually all a \heat reservoir" R)at temperature � = kBT ?Well, the small system an be in any one of a largenumber of fully-spei�ed states. It is onvenient to beinvent an abstrat label for a given fully-spei�ed stateso that we an talk about its properties and probabil-ity. Let's all suh a state j�i where � is a \fulllabel" | i.e. � inludes all the information thereis about the state of S. It is like a omplete list ofwhih ar is parked in whih spae, or exatly whihoins ame up heads or tails in whih order, or what-ever. For something simple like a single partile's spin,� may only speify whether the spin is up or down.Now onsider some partiular fully-spei�ed state j�iwhose energy is "�. As long as R is very big and Sis very small, S an | and sometimes will | absorbfrom R the energy "� required to be in the statej�i, no matter how large "� may be. However, youmight expet that states with really big "� wouldbe exited somewhat less often than states with small"�, beause the extra energy has to ome from R,and every time we take energy out of R we dereaseits entropy and make the resultant on�guration thatmuh less probable. You would be right. Can we bequantitative about this?Well, the ombined system fS+Rg has a multipliityfuntion 
 whih is the produt of the multipliity23A \small system" an even be a \partile," sine bothterms are intentionally vague and abstrat enough to meananything we want!

funtion 
S = 1 for S [whih equals 1 beausewe have already postulated that S is in a spei�fully spei�ed state j�i℄ and the multipliity funtion
R = e�R for R:
 = 
S � 
R = 1� e�RMoreover, the probability P� of �nding S in statej�i with energy "� will be proportional to this netmultipliity: P� / e�RWe must now take into aount the e�et on this prob-ability of removing the energy "� from R to exitethe state j�i.The energy of the reservoir R before we brought Sinto ontat with it was U . We don't need to knowthe value of U , only that it was a �xed starting point.The entropy of R was then �R(U). One ontat ismade and an energy "� has been \drained o�" intoS, the energy of R is (U � "�) and its entropy is�R(U � "�).Beause "� is so tiny ompared to U , we an treatit as a \di�erential" of U (like \dU") and estimatethe resultant hange in �R [relative to its old value�R(U)℄ in terms of the derivative of �R with respetto energy:�R(U + dU) = �R(U) + ���R�U � � dUor in this ase (with dU � �"�)�R(U � "�) = �R(U) � ���R�U � � "�But this derivative is by de�nition the inverse temper-ature of R: ��R�U � 1� . Thus�R(U � "�) = �R(U) � "��and thus the probability of �nding S in the state j�iobeys P� / e�R (U�"�) = exp h�R(U)� "�� ior P� / e�R (U) � exp��"�� �Sine e�R (U) is a onstant independent of either "�or � , that term will be the same for any state j�i sowe may ignore it and write simplyP� / exp��"�� � (16)This is the famousBoltzmann fator that desribesexatly how to alulate the relative probabilities ofdi�erent states j�i of a system in thermal ontatwith a heat reservoir at temperature � . It is probablythe single most useful rule of thumb in all of thermalphysis.



15.6. BOLTZMANN'S DISTRIBUTION 1115.6.1 The Isothermal AtmosphereThe gravitational potential energy of a gas moleule ofmass m at an altitude h above sea level is givenapproximately by " = mgh, where g = 9.81 m/s2.Here we neglet the derease of g with altitude, whihis a good approximation over a few dozen miles. Nextwe pretend that the temperature of the atmospheredoes not vary with altitude, whih is untrue, but per-haps relative to 0 K it is not all that silly, sine thedi�erene between the freezing (273.15 K) and boiling(373.15 K) points of water is less than 1/3 of their av-erage. For onveniene we will assume that the wholeatmosphere has a temperature T = 300 K (a slightlywarm \room temperature").In this approximation, the probability P(h) of �ndinga given moleule of mass m at height h will dropo� exponentially with h:P(h) = P(0) exp��mgh� �Thus the density of suh moleules per unit volumeand the partial pressure pm of that speies of moleulewill drop o� exponentially with altitude h:pm(h) = pm(0) exp�� hh0�where h0 is the altitude at whih the partial pressurehas dropped to 1=e of its value pm(0) at sea level.We may all h0 the \mean height of the atmosphere"for that speies of moleule. A quik omparison anda bit of algebra shows thath0 = �mgFor oxygen moleules (the ones we usually are aboutmost) h0 � 8 km. For helium atoms h0 � 64 km andin fat He atoms rise to the \top" of the atmosphereand disappear into interplanetary spae. This is onereason why we try not to lose any helium from super-onduting magnets et. | helium is a non-renewableresoure!15.6.2 How Big are Atoms?Wait a minute! How did I alulate h0? I had toknow m for the di�erent moleules, and that requiressome knowledge of the sizes of atoms | informationthat has not yet been set forth in this book! In fat,empirial observations about how fast the pressure ofthe atmosphere does drop o� with altitude ould givea pretty good idea of his big atoms are; this isn't howit was done historially, but let's give it a try anyway:

Suppose that, by limbing mountains and measuringthe density of oxygen moleules (O2) as a funtion ofaltitude, we have determined empirially that h0 forO2 is about 8,000 m. Then, aording to this simplemodel, it must be true that the mass m of an O2moleule is aboutm � �h0 g = 300� 1:38� 10�238� 103 � 9:81 kgor m � 5:3� 10�26 kgThis is a mighty small mass!Now to mix in just a pinh of atual history: Longago, hemists disovered (again empirially) that dif-ferent pure substanes ombined with other pure sub-stanes in �xed ratios of small integers times a er-tain harateristi mass (harateristi for eah puresubstane) alled its moleular weight A. Peoplehad a pretty good idea even then that these pure sub-stanes were made up of large numbers of identialunits alled \atoms,"24 but no one had the faintestidea how big atoms were | exept of ourse that theymust be pretty small, sine we never ould see any di-retly. The number N0 of moleules in one moleularweight of a pure substane was (orretly) presumed tobe the same, to explain why hemial reations obeyedthis rule. This number ame to be alled a \mole" ofthe substane. For oxygen (O2), the moleular weightis roughly 32 grams or 0.032 kg.If we now ombine this onventional de�nition of amole of O2 with our previous estimate of the mass ofone O2 moleule, we an estimateN0 � 0:0325:3� 10�26 � 6� 1023The exat number, obtained by quite di�erent means,is N0 � 6:02205� 1023 (17)moleules per mole. This is known as Avogadro'snumber.Turning the argument around, the mass of a moleulean be obtained from its moleular weight A as fol-lows: One mole of any substane is de�ned as a massA � 1 gram, and ontains N0 moleules (or atoms,in the ase of monatomi moleules) of the substane.Thus helium, with A = 4, weighs 4 gm (or 0.004 kg)per mole ontaining N0 atoms, so one He atom weighs(0:004=N0) kg or 6:6� 10�27 kg.24I will over the history of \Atomism" in a bit moredetail later on!



1215.7 Ideal GasesWe have argued on an abstrat basis that the state ofhighest entropy (and hene the most probable state)for any ompliated system is the one whose maro-sopi properties an be obtained in the largest pos-sible number of di�erent ways; if the model systemswe have onsidered are any indiation, a good rule ofthumb for how to do this is to let eah \degree of free-dom" of the system ontain (on average) an equal fra-tion of the total energy U . We an justify this argu-ment by treating that degree of freedom as a \system"in its own right (almost anything an be a \system")and applying Boltzmann's logi to show that the prob-ability of that mirosystem having an energy " whilein thermal equilibrium at temperature � deays expo-nentially as exp(�"=�). This implies a mean " on theorder of � , if we don't quibble over fators omparableto 1.The Equipartition Theorem, whih is more rigourouslyvalid than the above hand-waving would suggest,25spei�es the fator to be exatly 1/2:A system in thermalequilibrium with a heat reservoir at tem-perature � will have a mean energy of12� per degree of freedom.In an ideal monatomi gas of N atoms at temperature� eah atom has three degrees of freedom: left{right(x), bak{forth (y) and up{down (z). Thus the averageinternal energy of our monatomi ideal gas isU = 32 N � (18)25If you want the details, here they are: Suppose that piis the anonial momentum haraterizing the ith degreeof freedom of a system and that "(pi) = bp2i is the energyassoiated with a given value of pi. Assume further thatpi an have a ontinuous distribution of values from �1to +1. Then the probability of pi having a given valueis proportional to exp(�bp2i=� ) and therefore the averageenergy assoiated with that degree of freedom is given byh"(pi)i = R +1�1 bp2i e�bp2i =�dpiR +1�1 e�bp2i =�dpiThese de�nite integrals have \well known" solutions:Z +1�1 x2e�ax2dx = 12q �a3 ; Z +1�1 e�ax2dx =q�a ;where in this ase a = b=� and x = pi, givingh"(pi)i = �2 : QED

In spite of the simpliity of the above argument26 thisis a profound and useful result. It tells us, for in-stane, that the energy U of an ideal gas does notdepend upon its pressure27 p! This is not stritlytrue, of ourse; interations between the atoms of agas make its potential energy di�erent when the atomsare (on average) lose together or far apart. But formost gases at (human) room temperature and (Earth)atmospheri pressure, the ideal-gas approximation isextremely aurate!It also means that if we hange the temperature ofa ontainer of gas, the rate of hange of the internalenergy U with temperature, whih is the de�nitionof the heat apaityC � �U�T ; (19)is extremely simple: sine � � kBT and U = 32N� ,U = 32NkBT and so the heat apaity of an ideal gasis onstant: C [ideal gas℄ = 32 N kB (20)Now let's examine our gas from a more mirosopi,\mehanial" point of view: piture one atom boun-ing around inside a ubial ontainer whih is a lengthL on a side. In the \ideal" approximation, atomsnever hit eah other, but only boune o� the walls, soour onsideration of a single atom should be indepen-dent of whether or not there are other atoms in therewith it. Suppose the atom in question has a veloity~v with omponents vx, vy and vz along the three axesof the ube.Thinking only of the wall at the +x end of the box,our atom will boune o� this wall at a rate 1=t wheret is the time taken to travel a distane 2L (to the farwall and bak again) at a speed vx: t = 2L=vx. Weassume perfetly elasti ollisions | i.e. the magni-tude of vx does not hange when the partile bounes,it just hanges sign. Eah time our atom bounes o�the wall in question, it imparts an impulse of 2mvx tothat wall. The average impulse per unit time (fore)exerted on said wall by said atom is thus F1 = 2mvx=tor F1 = mv2x=L. This fore is (on average) spread outall over the wall, an area A = L2, so that the foreper unit area (or pressure) due to that one partile is26We an, of ourse, make the explanation more elabo-rate, thus satisfying both the demands of rigourous logiand the Puritan onvition that nothing of real value anbe obtained without hard work. I will leave this as anexerise for other instrutors.27Unfortunately, we use the same notation (p) for bothmomentum and pressure. Worse yet, the notation for num-ber density (number of atoms per unit volume) is n. Sorry,I didn't set up the onventions.



15.8. THINGS I LEFT OUT 13given by p1 = F1=A = mv2x=L3. Sine L3 = V , thevolume of the ontainer, we an write p1 = mv2x=Vor p1 V = mv2xThe average pressure p exerted by all N atomstogether is just N times the mean value of p1: p =Nhp1i, where the \h� � �i" notation means the averageof the quantity within the angle brakets. Thusp V = N m hv2xi (21)Now, the kineti energy of our original atom is expli-itly given by 12mv2 = 12m(v2x + v2y + v2z)sine ~v is the vetor veloity. We expet eah of themean square veloity omponents hv2xi, hv2yi and hv2zito average about the same in a random gas, so eahone has an average value of 13 of their sum.28 Thushv2xi = hv2yi = hv2zi = 13 hv2i and the mean kinetienergy of a single partile is U1 = 32 mhv2xi. Thekineti energy of all N atoms is just U = NU1, orU = 32 N m hv2xi (22)But aording to Eq. (18) we have U = 32 N� ; so wemay write29 m hv2xi = � (23)Combining Eqs. (21) and (23), we obtain the famousideal gas law: p V = N � (24)Despite the imsiness of the foregoing arguments, theideal gas law is a quantum mehanially orret de-sription of the interrelationship between the pressurep, the volume V and the temperature � � kBTof an ideal gas of N partiles, as long as the onlyway to store energy in the gas is in the form of the ki-neti energy of individual partiles (usually atoms ormoleules). Real gases an also store some energy inthe form of rotation or vibration of larger moleulesmade of several atoms or in the form of potential en-ergies of interation (attration or repulsion) between28We may say that the average kineti energy \stored inthe x degree of freedom" of an atom is 12mhv2xi.29This is equivalent to saying that the average energystored in the x degree of freedom of one atom [or, for thatmatter, in any other degree of freedom℄ is 12 � | whihis just what we originally laimed in the equipartitiontheorem. We ould have just jumped to this result, but Ithought it might be illuminating to show an expliit argu-ment for the equality of the mean energies stored in severaldi�erent degrees of freedom.

the partiles themselves. It is the latter interationthat auses gases to spontaneously ondense, below aertain boiling point Tb, into liquids and, at a stilllower temperature Tm (alled the melting point), intosolids. However, in the gaseous phase even arbon [va-porized diamond℄ will behave very muh like an idealgas at suÆiently high temperature and low pressure.It is a pretty good Law!15.8 Things I Left OutAs you an tell by the length of this hapter, I �ndit hard to stop talking about this wonderful subjet.Thermal Physis is like an old but vibrantly modernity with a long, fabulous and metiulously preservedhistory: around every orner there is a host of fasinat-ing shops, theatres, galleries and restaurants o�eringthe latest goodies from a osmopolitan state of the art,intermixed with libraries and museums that tell storiesof heroi ats and world-hanging events. \Shop tillyou drop!" Still, I have to stop somewhere.The foregoing has been a rather unusual introdutionto Thermal Physis. I have ompletely left out thelaws of thermodynamis | the traditional start-ing point for the subjet | in favour of a stritly on-eptual (though often painfully formal, I know) expla-nation of the meaning of entropy and temperature, inthe onvition that these notions an be generalized toprovide tools for quantitative analysis of random sta-tistial proesses in realms where no one ever dreamedof applying the paradigms of Physis. In my zeal toonvey this onvition, I have also omitted any disus-sion of the profound pratial appliations of Thermo-dynamis, like engines and refrigerators. Worstof all, I have not told any stories of the bizarre spon-taneous behaviour of large numbers of similar atomsunder di�erent onditions of temperature and pressure| the so-alled equations of state and phase dia-grams of gases, liquids and solids, from Fermi gasesto superfluids and superondutors. Part of thereason for this is that you need a bit more introdu-tion to the phenomenology of Physis | quantummehanis in partiular | before you an fully ap-preiate (or even, in some ases, desribe) muh of theabove-mentioned behaviour. All I an hope to havedone in this HyperReferene is to have unloked thedoor (and perhaps opened it a rak) to a world ofwonder and magi where analytial thinking and math-ematis play the role of spells and inantations. I urgeyou to ontinue this adventure beyond the limits (andend) of this HyperReferene!


