
14.1. WAVE PHENOMENA 1WAVESIn a purely mathematial approah to thephenomenology of waves, we might hoose tostart with theWave Equation, a di�erentialequation desribing the qualitative features ofwave propagation in the same way that SHMis haraterized by �x = �!2x. The advantageof suh an approah is that one gains on�-dene that any phenomenon that an be shownto obey the Wave Equation will automati-ally exhibit all the harateristi properties ofwave motion. This is a very eonomial wayof looking at things.Unfortunately, the phenomenology of wavemotion is not very familiar to most beginners| at least not in the mathematial form wewill need here; so in this instane I will adoptthe approah used in most �rst year Physistextbooks for almost everything: I will startwith the answer (the simplest solution to theWave Equation) and explore its propertiesbefore proeeding to show that it is indeed asolution of the Wave Equation | or, forthat matter, before explaining what theWaveEquation is.14.1 Wave PhenomenaWe an visualize a vivid example for the sakeof illustration: suppose the \amplitude" A isthe height of the water's surfae in the oean(measured from A = 0 at \sea level") and x isthe distane toward the East, in whih dire-tion waves are moving aross the oean's sur-fae.1 Now imagine that we stand on a skinnypiling and wath what happens to the waterlevel on its sides as the wave passes: it goes1Tehnially speaking, I ouldn't have piked a worseexample, sine water waves do not behave like our idealizedexample | a ork in the water does not move straight upand down as a wave passes, but rather in a vertial irle.Nevertheless I will use the example for illustration beauseit is the most familiar sort of easily visualized wave formost people and you have to wath losely to notie thedi�erene anyway!

Figure 14.1 Two views of a wave.up and down at a regular frequeny, exeutingSHM as a funtion of time. Next we standat a big piture window in the port side of asubmarine pointed East, partly submerged sothat the wave is at the same level as the win-dow; we take a ash photograph of the waveat a given instant and analyze the result: thewave looks instantaneously just like the graphof SHM exept the horizontal axis is distaneinstead of time. These two images are dis-played in Fig. 14.1.14.1.1 Traveling WavesHow do we represent this behaviour mathe-matially? Well, A is a funtion of posi-tion ~r and time t: A(~r; t). At any �xed po-sition ~r, A osillates in time at a frequeny!. We an desribe this statement mathemat-ially by saying that the entire time depen-dene of A is ontained in [the real part of℄a fator e�i!t (that is, the amplitude at any�xed position obeys SHM ).2The osillation with respet to position ~r atany instant of time t is given by the analo-2Note that e+i!t would have worked just as well, sinethe real part is the same as for e�i!t. The hoie of signdoes matter, however, when we write down the ombinedtime and spae dependene in Eq. (4), whih see.



2gous fator ei~k�~r where ~k is the wave ve-tor;3 it points in the diretion of propagationof the wave and has a magnitude (alled the\wavenumber") k given byk = 2�� (1)where � is the wavelength. Note the analogybetween k and ! = 2�T (2)where T is the period of the osillation in timeat a given point. You should think of � asthe \period in spae."We may simplify the above desription byhoosing our oordinate system so that the xaxis is in the diretion of ~k, so that4 ~k � ~r =k x. Then the amplitude A no longer dependson y or z, only on x and t.We are now ready to give a full desription ofthe funtion desribing this wave:A(x; t) = A0 eikx � e�i!tor, realling the multipliative property of theexponential funtion, ea � eb = e(a+b),A(x; t) = A0 ei(kx�!t): (3)To ahieve omplete generality we an restorethe vetor version:A(x; t) = A0 ei(~k�~r�!t) (4)This is the preferred form for a general de-sription of a plane wave, but for present3The name \wave vetor" is both apt and inadequate |apt beause the term vetor expliitly reminds us that itsdiretion de�nes the diretion of propagation of the wave;inadequate beause the essential inverse relationship be-tween k and the wavelength � [see Eq. (1)℄ is not suggestedby the name. Too bad. It is at least a little more desrip-tive than the name given to the magnitude k of ~k, namelythe \wavenumber."4In general ~k � ~r = xkx + yky + zkz. If ~k = k {̂ thenkx = k and ky = kz = 0, giving ~k � ~r = k x.

purposes the salar version (3) suÆes. UsingEqs. (1) and (2) we an also write the planewave funtion in the formA(x; t) = A0 exp �2�i�x� � tT �� (5)but you should strive to beome ompletelyomfortable with k and ! | we will beseeing a lot of them in Physis!14.1.2 Speed of PropagationNeither of the images in Fig. 14.1 apturesthe most important qualitative feature of thewave: namely, that it propagates | i.e. movessteadily along in the diretion of ~k. If we wereto let the snapshot in Fig. 14.1b beome amovie, so that the time dependene ould beseen vividly, what we would see would be thesame wave pattern sliding along the graph tothe right at a steady rate. What rate? Well,the answer is most easily given in simple qual-itative terms:The wave has a distane � (one wavelength)between \rests." Every period T , one fullwavelength passes a �xed position. Thereforea given rest travels a distane � in a time Tso the veloity of propagation of the wave isjust  = �T or  = !k (6)where I have used  as the symbol for the prop-agation veloity even though this is a om-pletely general relationship between the fre-queny !, the wave vetor magnitude k andthe propagation veloity  of any sort of wave,not just eletromagneti waves (for whih  hasits most familiar meaning, namely the speed oflight).This result an be obtained more easily by not-ing that A is a funtion only of the phase � ofthe osillation, � � kx� !t (7)



14.2. THE WAVE EQUATION 3and that the riterion for \seeing the samewaveform" is � = onstant or d� = 0. Ifwe take the di�erential of Eq. (7) and set itequal to zero, we getd� = k dx � ! dt = 0 or k dx = ! dtor dxdt = !k :But dx=dt = , the propagation velo-ity of the waveform. Thus we reprodueEq. (6). This treatment also shows why wehose e�i!t for the time dependene so thatEq. (7) would desribe the phase: if we usede+i!t then the phase would be � � kx +!t whih gives dx=dt = �, | i.e. a wave-form propagating in the negative x diretion(to the left as drawn).If we use the relationship (6) to write (kx �!t) = k(x� t), so that Eq. (4) beomesA(x; t) = A0 eik(x�t);we an extend the above argument to wave-forms that are not of the ideal sinusoidal shapeshown in Fig. 14.1; in fat it is more vivid ifone imagines some speial shape like (for in-stane) a pulse propagating down a string atveloity . As long as A(x; t) is a funtion onlyof x0 = x�t, no matter what its shape, it willbe stati in time when viewed by an observertraveling along with the wave5 at veloity .This doesn't require any elaborate derivation;x0 is just the position measured in suh anobserver's referene frame!14.2 The Wave EquationThis is a bogus \derivation" in that we startwith a solution to the Wave Equation andthen show what sort of di�erential equation itsatis�es. Of ourse, one we have the equation5Don't try this with an eletromagneti wave! The ar-gument shown here is expliitly nonrelativisti, althougha more mathematial proof reahes the same onlusionwithout suh restritions.

we an work in the other diretion, so this isnot so bad. . . .Suppose we know that we have a travelingwave A(x; t) = A0 os(kx� !t).At a �xed position (x = onst) we see SHMin time:  �2A�t2 !x = �!2A (8)(Read: \The seond partial derivative of Awith respet to time [i.e. the aeleration ofA℄ with x held �xed is equal to �!2 times Aitself.") I.e. we must have a linear restoringfore.Similarly, if we take a \snapshot" (hold t �xed)and look at the spatial variation of A, we �ndthe osillatory behaviour analogous to SHM, �2A�x2 !t = � k2A (9)(Read: \The seond partial derivative of Awith respet to position [i.e. the urvature ofA℄ with t held �xed is equal to �k2 times Aitself.")ThusA = � 1!2  �2A�t2 !x = � 1k2  �2A�x2 !t :If we multiply both sides by �k2, we getk2!2  �2A�t2 !x =  �2A�x2 !t :But ! = k so k2!2 = 12 , giving the WaveEquation: �2A�x2 � 12 �2A�t2 = 0 (10)In words, the urvature of A is equal to 1=2times the aeleration of A at any (x; t) point(what we all an event in spaetime).



4Whenever you see this di�erential equationgoverning some quantity A, i.e. where the a-eleration of A is proportional to its urvature,you know that A(x; t) will exhibit wave mo-tion!14.3 Wavy Strings
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Figure 14.2 A small segment of a taut string.One system that exhibits wave motion is thetaut string. Piture a string with a uni-form mass per unit length � under tensionF . Ignoring any e�ets of gravity, the undis-turbed string will of ourse follow a straightline whih we label the x axis. There are a-tually two ways we an \perturb" the quies-ent string: with a \longitudinal" ompres-sion/streth displaement (basially a soundwave in the string) or with a \transverse" dis-plaement in a diretion perpendiular to thex axis, whih we will label the y diretion.The sketh in Fig. 14.2 shows a small stringsegment of length d` and mass dm =� d` whih makes an average angle � with re-spet to the x axis. The angle atually hangesfrom � � d�=2 at the left end of the segmentto � + d�=2 at the right end. For small dis-plaements � � 1 [the large � shown in thesketh is just for visual larity℄ and we an usethe small-angle approximationsdx = d` os � � d`

dy = d` sin � � � d`dydx = tan � � � (11)Furthermore, for small � the net foredF = 2F sin(d�=2) � 2F (d�=2) = F d� (12)ating on the string segment is essentially inthe y diretion, so we an use Newton's Se-ond Law on the segment at a �xed x loationon the string:dF � dmay = �y dm orF d� � �y � d` or �2y�t2 !x � F d�� d` � F�  d�dx! : (13)Referring now bak to Eq. (11) we an use � �dy=dx to set  d�dx! �  �2ydx2!t (14)| i.e. the urvature of the string at time t.Plugging Eq. (14) bak into Eq. (13) gives �2y�t2 !x � F�  �2ydx2!t � 0 (15)whih is the Wave Equation with12 = �F or  = sF� : (16)We may therefore jump right to the onlusionthat waves will propagate down a taut stringat this veloity.14.3.1 PolarizationOne nie feature of waves in a taut string isthat they expliitly illustrate the phenomenonof polarization: if we hange our notationslightly to label the string's equilibrium dire-tion (and therefore the diretion of propaga-tion of a wave in the string) as z, then there



14.4. LINEAR SUPERPOSITION 5are two orthogonal hoies of \transverse" di-retion: x or y. We an set the string \wig-gling" in either transverse diretion, whih weall the two orthogonal polarization diretions.Of ourse, one an hoose an in�nite numberof transverse polarization diretions, but theseorrespond to simple superpositions of x- andy-polarized waves with the same phase.One an also superimpose x- and y-polarizedwaves of the same frequeny and wavelengthbut with phases di�ering by ��=2. This givesleft- and right-irularly polarized waves; Iwill leave the mathematial desription of suhwaves (and the mulling over of its physialmeaning) as an \exerise for the student. . . ."14.4 Linear SuperpositionThe above derivation relied heavily on thesmall-angle approximations whih arevalid only for small displaements of the stringfrom its equilibrium position (y = 0 for allx). This almost always true: the simple de-sription of a wave given here is only stritlyvalid in the limit of small displaements fromequilibrium; for large displaements we usu-ally pik up \anharmoni" terms orrespond-ing to nonlinear restoring fores. But as longas the restoring fore stays linear we havean important onsequene: several di�erentwaves an propagate independently throughthe same medium. (E.g. down the samestring.) The displaement at any given timeand plae is just the linear sum of the displae-ments due to eah of the simultaneously propa-gating waves. This is known as the prinipleof linear superposition, and it is essentialto our understanding of wave phenomena.In general the overall displaement A(x; t) re-sulting from the linear superposition of twowaves A1ei(k1x�!1t) and A2ei(k2x�!2t) is givenbyA(x; t) = A1ei(k1x�!1t) + A2ei(k2x�!2t): (17)

Let's look at a few simple examples.14.4.1 Standing Waves

Figure 14.3 Traveling vs. standing waves.A partiularly interesting example of superpo-sition is provided by the ase where A1 =A2 = A0 , k1 = k2 = k and !1 = �!2 = !.That is, two otherwise idential waves propa-gating in opposite diretions. The algebra issimple:A(x; t) = A0 hei(kx�!t) + ei(kx+!t)i= A0eikx he�i!t + e+i!ti= A0eikx[os(!t)� i sin(!t)+ os(!t) + i sin(!t)℄= 2A0 os(!t)eikx: (18)The real part of this (whih is all we everatually use) desribes a sinusoidal waveformof wavelength � = 2�=k whose amplitude2A0 os(!t) osillates in time but whih doesnot propagate in the x diretion | i.e. thelower half of Fig. 14.3. Standing waves arevery ommon, espeially in situations where atraveling wave is reeted from a boundary,sine this automatially reates a seond waveof similar amplitude and wavelength propagat-ing bak in the opposite diretion | the very



6ondition assumed at the beginning of this dis-ussion.14.4.2 Classial QuantizationNone of the foregoing disussion allows us touniquely speify any wavelike solution to thewave equation, beause nowhere have wegiven any boundary onditions foring thewave to have any partiular behaviour at anypartiular point. This is not a problem for thegeneral phenomenology disussed so far, butif you want to atually desribe one partiularwave you have to know this stu�.

Figure 14.4 The �rst three allowed standingwaves in a \losed box" (e.g. on a string with�xed ends).Boundary onditions are probably easiest toillustrate with the system of a taut stringof length L with �xed ends, as shown inFig. 14.4.6 Fixing the ends fores the wavefuntion A(x; t) to have nodes (positionswhere the amplitude is always zero) at thosepositions. This immediately rules out travel-ing waves and restrits the simple sinusoidal\modes" to standing waves for whih L is aninteger number of half-wavelengths:7�n = 2Ln ; n = 1; 2; 3; � � � (19)6The Figure ould also desribe standing sound wavesin an organ pipe losed at both ends, or the eletri �eldstrength in a resonant avity, or the probability amplitudeof an eletron on�ned to a one-dimensional \box" of lengthL. 7Note that the nth mode has (n � 1) nodes in additionto the two at the ends.

Assuming that  = !=k = �� = onst, thefrequeny � [in yles per seond or Hertz(Hz)℄ of the nth mode is given by �n = =�n or�n = n 2L; n = 1; 2; 3; � � � (20)For a string of linear mass density � undertension F we an use Eq. (16 to write whatone might frivolously desribe as the guitartuner's equation:�n = n2L sF� ; n = 1; 2; 3; � � � (21)Note that a given string of a given length Lunder a given tension F has in priniple an in-�nite number of modes (resonant frequenies);the guitarist an hoose whih modes to ex-ite by pluking the string at the position of anantinode (position ofmaximum amplitude) forthe desired mode(s). For the �rst few modesthese antinodes are at quite di�erent plaes, asevident from Fig. 14.4. As another \exerisefor the student" try deduing the relationshipbetween modes with a ommon antinode |these will all be exited as \harmonis" whenthe string is pluked at that position.Exatly the same formulae apply to soundwaves in organ pipes if they are losed at bothends. An organ pipe open at one end musthowever have an antinode at that end; thisleads to a slightly di�erent sheme for enu-merating modes, but one that you an easilydedue by a similar sequene of logi.This sort of restrition of the allowed modes ofa system to a disrete set of values is knownas quantization. However, most people arenot austomed to using that term to desribemarosopi lassial systems like taut strings;we have a tendeny to think of quantizationas something that only happens in quantummehanis. In reality, quantization is anubiquitous phenomenon wherever wave mo-tion runs up against �xed boundary ondi-tions.



14.6. WATER WAVES 714.5 Energy DensityConsider again our little element of string atposition x. We have shown that (for �xedx) the mass element will exeute SHM as afuntion of time t. Therefore there is an ef-fetive linear restoring fore in the ydiretion ating on the mass element dm =�dx: dF = F d� = F (�2y=�x2) dx. But fora simple traveling wave we have8 y(x; t) =y0 os(kx�!t) so (�2y=�x2) = �k2y, givingdF = � [k2 F dx℄ y. In other words, the e�e-tive spring onstant for an element of stringdx long is �e� = k2 F dx where I haveused the unonventional notation � for the ef-fetive spring onstant to avoid onfusing itwith the wavenumber k, whih is somethingompletely di�erent. Applying our knowledgeof the potential energy stored in a strethedspring, dU = 12�e� y2, we have the elastipotential energy stored in the string per unitlength, dU=dx = 12k2 F y2 or, plugging iny(x; t),dUdx = 12 k2 F y20 os2(kx� !t) (22)| that is, the potential energy density is pro-portional to the amplitude squared.What about kineti energy? From SHM weexpet the energy to be shared between po-tential and kineti energy as eah mass ele-ment osillates through its period. Well, thekineti energy dK of our little element ofstring is just dK = 12dmv2y. Again dm =� dx and now we must evaluate vy. Work-ing from y(x; t) = y0 os(kx � !t) we havevy = �! y0 sin(kx � !t), from whih we anwritedKdx = 12 �!2 y20 sin2(kx� !t): (23)The total energy density is of ourse the sum8I have avoided omplex exponentials here to avoid on-fusion when I get around to alulating the transversespeed of the string element, vy. The aeleration is thesame as for the omplex version.

of these two:dEdx = dUdx + dKdx ordEdx = 12 y20 hk2 F os2 � + � !2 sin2 �iwhere � � kx � !t. Using  = !=k =qF=� we an write this asdEdx = 12 y20 h�!2 os2 � + �!2 sin2 �i ordEdx = 12 �!2 y20 : (24)You an use F k2 in plae of �!2 if you like,sine they are equal. [Exerise for the student.℄Note that the net energy density (potentialplus kineti) is onstant in time and spae forsuh a uniform traveling wave. It just swithesbak and forth between potential and kinetienergy twie every yle. Sine the averageof either os2 � or sin2 � is 1/2, the energydensity is on average shared equally betweenkineti and potential energy.If we want to know the energy per unit time(power P ) transported past a ertain point xby the wave, we just multiply dE=dx by  =dx=dt to getP � dEdt = 12 �!2  y20 : (25)Again, you an play around with the on-stants; instead of �!2  you an use!2pF� and so on.Note that while the wave does not transportany mass down the string (all physial motionis transverse) it does transport energy. This isan ubiquitous property of waves, luky for us!14.6 Water WavesAlthough all sorts of waves are ubiquitous inour lives,9 our most familiar \wave experi-enes" are probably with water waves, whih9Indeed, we are made of waves, as quantum mehan-is has taught us!



8are unfortunately one of the least simple typesof waves. Therefore, although water wavesare routinely used for illustration, they arerarely disussed in great depth (heh, heh) inintrodutory Physis texts. They do, how-ever, serve to illustrate one important featureof waves, namely that not all waves obey thesimple relationship  = !=k for their propa-gation veloity .Let's restrit ourselves to deep oean waves,where the \restoring fore" is simply gravity.(When a wave reahes shallow water, the bot-tom provides an immobile boundary that om-pliates matters severely, as anyone knows whohas ever wathed surf breaking on a beah!)The motion of an \element" of water in suh awave is not simply \up and down" as we pre-tended at the beginning of this hapter, buta superposition of \up and down" with \bakand forth" in the diretion of wave propaga-tion. A ork oating on the surfae of suh awave exeutes irular motion, or so I am told.(It is atually quite diÆult to on�rm this as-sertion experimentally sine it requires a �xedreferene that is not moving with the water| a hard thing to arrange in pratie with-out disturbing the wave itself.) More impor-tantly, the propagation veloity of suh wavesis higher for longer wavelength.14.6.1 Phase vs. Group VeloityThe preise relationship between angular fre-queny ! and wavenumber k for deep-waterwaves is ! = sg k2 (26)where g has its usual meaning. Suh a fun-tional relationship !(k) between frequenyand wavenumber is known as the dispersionrelation for waves in the medium in ques-tion, for reasons that will be lear shortly.If we have a simple traveling plane waveA(x; t) = A0 exp[i(kx � !t)℄, with no begin-ning and no end, the rate of propagation of a

point of onstant phase (known as the phaseveloity vph) is still given by Eq. (6):vph � !k (27)However, by ombining Eq. (27) with Eq. (26)we �nd that the phase veloity is higher forsmaller k (longer �):vph = r g2k : (28)Moreover, suh a wave arries no information.It has been passing by forever and will on-tinue to do so forever; it is the same ampli-tude everywhere; and so on. Obviously ourplane wave is a bit of an oversimpli�ation.If we want to send a signal with a wave, wehave to turn it on and o� in some pattern; wehave to make wave pulses (or, antiipating theterminology of quantum mehanis, \wavepakets"). And when we do that with wa-ter waves, we notie something odd: the wavepakets propagate slower than the \wavelets"in them!
Figure 14.5 A wave paket moving atvg with \wavelets" moving through it at vph.Suh a paket is a superposition of waves withdi�erent wavelengths; the k-dependene of vphauses a phenomenon known as dispersion,in whih waves of di�erent wavelength, ini-tially moving together in phase, will drift apartas the paket propagates, making it \broader"in both spae and time. (Obviously suh a dis-persive medium is undesirable for the trans-mission of information!) But how do we deter-mine the e�etive speed of transmission of saidinformation | i.e. the propagation veloity of



14.7. SOUND WAVES 9the paket itself, alled the group veloityvg?Allow me to defer an explanation of the fol-lowing result until a later setion. The generalde�nition of the group veloity (the speed oftransmission of information and/or energy ina wave paket) isvg � �!�k . (29)For the partiular ase of deep-water waves,Eq. (29) ombined with Eq. (26) givesvg = 12r g2k : (30)That is, the paket propagates at half thespeed of the \wavelets" within it. This be-haviour an atually be observed in the wakeof a large vessel on the oean, seen from highabove (e.g. from an airliner).Suh exoti-seeming wave phenomena areubiquitous in all dispersive media, whih areanything but rare. However, in the follow-ing hapters we will restrit ourselves to wavespropagating through simple non-dispersivemedia, for whih the dispersion relationis just ! =  k with  onstant, for whihvph = vg = .14.7 Sound WavesPiture a \snapshot" (holding time t �xed) of asmall ylindrial setion of an elasti medium,shown in Fig. 14.6: the ross-setional areais A and the length is dx. An exess pres-sure P (over and above the ambient pres-sure existing in the medium at equilibrium)is exerted on the left side and a slightly dif-ferent pressure P + dP on the right. Theresulting volume element dV = Adx has amass dm = � dV = �A dx, where � isthe mass density of the medium. If we hoosethe positive x diretion to the right, the net

Figure 14.6 Cylindrial element of a ompressiblemedium.fore ating on dm in the x diretion isdFx = PA� (P + dP )A = �AdP .Now let s denote the displaement of parti-les of the medium from their equilibrium po-sitions. (I didn't use A here beause I am usingthat symbol for the area. This may also dif-fer between one end of the ylindrial elementand the other: s on the left vs. s + ds onthe right. We assume the displaements to bein the x diretion but very small ompared todx, whih is itself no great shakes.10The frational hange in volume dV=V ofthe ylinder due to the di�erene between thedisplaements at the two ends isdVV = (s+ ds)A� sAAdx = dsdx=  �s�x!t (31)where the rightmost expression reminds usexpliitly that this desription is being on-struted around a \snapshot" with t held �xed.Now, any elasti medium is by de�nition om-pressible but \�ghts bak" when ompressed(dV < 0) by exerting a pressure in thediretion of inreasing volume. The bulkmodulus B is a onstant haraterizing howhard the medium �ghts bak | a sort of10Note also that any of s, ds, P or dP an be eitherpositive or negative; we merely illustrate the math usingan example in whih they are all positive.



103-dimensional analogue of the spring on-stant. It is de�ned byP = �B dVV : (32)Combining Eqs. (31) and (32) givesP = �B  �s�x!t (33)so that the di�erene in pressure between thetwo ends isdP =  �P�x !t dx = �B  �2s�x2!t dx: (34)We now use PFx = max on the mass ele-ment, giving�AdP = AB  �2s�x2!t dx= dmax = �A dx  �2s�t2 !x (35)where we have noted that the aeleration ofall the partiles in the volume element (assum-ing ds� s) is just ax � (�2s=�t2)x.If we anel Adx out of Eq. (35), dividethrough by B and ollet terms, we get �2s�x2!t � �B  �2s�t2 !x = 0 or �2s�x2!t � 12  �2s�t2 !x = 0 (36)whih the aute reader will reognize as thewave equation in one dimension (x), pro-vided  = sB� (37)is the veloity of propagation.The fat that disturbanes in an elastimedium obey the wave equation guaranteesthat suh disturbanes will propagate as sim-ple waves with phase veloity  given byEq. (37).

We have now progressed from the stritly one-dimensional propagation of a wave in a tautstring to the two-dimensional propagation ofwaves on the surfae of water to the three-dimensional propagation of pressure waves inan elasti medium (i.e. sound waves); yet wehave ontinued to pretend that the only sim-ple type of traveling wave is a plane wave withonstant ~k. This will never do; we will needto treat all sorts of wave phenomena, and al-though in general we an treat most types ofwaves as loal approximations to plane waves(in the same way that we treat the Earth's sur-fae as a at plane in most mehanis prob-lems), it is important to reognize the mostimportant features of at least one other om-mon idealization | the spherial wave.14.8 Spherial WavesThe utility of thinking of ~k as a \ray" be-omes even more obvious when we get awayfrom plane waves and start thinking of waveswith urved wavefronts. The simplest suhwave is the type that is emitted when a peb-ble is tossed into a still pool | an exam-ple of the \point soure" that radiates wavesisotropially in all diretions. The wavefrontsare then irles in two dimensions (the sur-fae of the pool) or spheres in three dimen-sions (as for sound waves) separated by onewavelength � and heading outward from thesoure at the propagation veloity . In thisase the \rays" k point along the radius ve-tor r̂ from the soure at any position and wean one again write down a rather simple for-mula for the \wave funtion" (displaement Aas a funtion of position) that depends only onthe time t and the salar distane r from thesoure.A plausible �rst guess would be just A(x; t) =A0 ei(kr�!t), but this annot be right! Whynot? Beause it violates energy onservation.The energy density stored in a wave is pro-portional to the square of its amplitude; in



14.8. SPHERICAL WAVES 11the trial solution above, the amplitude of theoutgoing spherial wavefront is onstant as afuntion or r, but the area of that wavefrontinreases as r2. Thus the energy in the wave-front inreases as r2? I think not. We an getrid of this e�et by just dividing the amplitudeby r (whih divides the energy density by r2).Thus a trial solution isA(x; t) = A0 ei(kr�!t)r : (38)whih is, as usual, orret.11 The fator of1=r aounts for the onservation of energy inthe outgoing wave: sine the spherial \wavefront" distributes the wave's energy over a sur-fae area 4�r2 and the ux of energy per unitarea through a spherial surfae of radius r isproportional to the square of the wave ampli-tude at that radius, the integral of jf j2 over theentire sphere (i.e. the total outgoing power)is independent of r, as it must be.We won't use this equation for anything rightnow, but it is interesting to know that itdoes aurately desribe an outgoing12 spheri-al wave.The pereptive reader will have notied by nowthat Eq. (38) is not a solution to the waveequation as represented in one dimension byEq. (10). That is hardly surprising, sine thespherial wave solution is an intrinsially 3-dimensional beast; what happened to y and z?The orret vetor form of the wave equa-11I should probably show you a few wrong guesses �rst,just to avoid giving the false impression that we alwaysguess right the �rst time in Physis; but it would use upa lot of spae for little purpose; and besides, \knowingthe answer" is always the most powerful problem-solvingtehnique!12One an also have \inoming" spherial waves, forwhih Eq. (38) beomesA(x; t) = A0 ei(kr+!t)r :

tion is r2A � 12 �2A�t2 = 0 (39)where the Laplaian operator r2 an beexpressed in Cartesian13 oordinates (x; y; z)as14 r2 = �2�x2 + �2�y2 + �2�z2 : (40)With a little patient e�ort you an show thatEq. (38) does indeed satisfy Eq. (39), if youremember that r = px2 + y2 + z2. Or youan just take my word for it. . . .

13The Laplaian operator an also be represented inother oordinate systems suh as spherial (r; �; �) or ylin-drial (�; �; z) oordinates, but I won't get arried awayhere.14The Laplaian operator an also be thought of as theinner (salar or \dot") produt of the gradient operator~r with itself: r2 = ~r � ~r, where~r = {̂ ��x + |̂ ��y + k̂ ��zin Cartesian oordinates. This vetor alulus stu�is really elegant | you should hek it out sometime |but it is usually regarded to be beyond the sope of anintrodutory presentation like this.



1214.9 Eletromagneti WavesWe have some diÆulty visualizing a wave onsisting only of eletri and magneti �elds. How-ever, if we plot the strength of ~E along one axis and the strength of ~B along another (perpen-diular) axis, as in Fig. 14.7, then the diretion of propagation k̂ will be perpendiular to both~E and ~B, as shown.
Figure 14.7 A linearly polarized eletromagneti wave. The eletri and magneti �elds ~E and ~Bare mutually perpendiular and both are perpendiular to the diretion of propagation k̂ (~k is thewave vetor).14.9.1 PolarizationThe ase shown in Fig. 14.7 is linearly polarized, whih means simply that the ~E and ~B �eldsare in spei� �xed diretions. Of ourse, the diretions of ~E and ~B ould be interhanged,giving the \opposite" polarization. Polaroid sunglasses transmit the light waves with ~E vertial(whih are not reeted eÆiently o� horizontal surfaes) and absorb the light waves with ~Ehorizontal (whih are), thus reduing \glare" (reeted light from horizontal surfaes) withoutbloking out all light.There is another possibility, namely that the two linear polarizations be superimposed so thatboth the ~E and ~B vetors rotate around the diretion of propagation k̂, remaining alwaysperpendiular to k̂ and to eah other. This is known as irular polarization. It too omesin two versions, right irular polarization and left irular polarization, referring to the handwhose �ngers url in the diretion of the rotation if the thumb points along k̂.14.9.2 The Eletromagneti SpetrumWe have speial names for eletromagneti (EM) waves of di�erent wavelengths and frequen-ies.15 We all EM waves with � >� 1 m \radio waves," whih are subdivided into various rangesor \bands" like \short wave" (same thing as high frequeny), VHF (very high frequeny), UHF(ultra high frequeny) and so on.16 The dividing line between \radar" and \mirowave" bands(for example) is determined by arbitrary onvention, if at all, but the rule of thumb is that ifthe wavelength �ts inside a very small appliane it is \mirowave." Somewhere towards theshort end of the mirowave spetrum is the beginning of \far infrared," whih of ourse beomes\near infrared" as the wavelength gets still shorter. The name \infrared" is meant to suggest15If the wavelength � inreases (so that the wavenumber k = 2�=� dereases), then the frequeny ! must derease tomath, sine the ratio !=k must always be equal to the same propagation veloity .16One an detet a history of proponents of di�erent bands laiming ever higher (and therefore presumably \better")frequeny ranges. . . .



14.10. REFLECTION 13frequenies below those of the red end of the visible light spetrum of EM waves, whih extends(depending on the individual eye) from a wavelength of roughly 500 nm (5000 �A) for red lightthrough orange, yellow, green and blue to roughly 200 nm (2000 �A) for violet light. Beyondthat we lost sight of the shorter wavelengths (so to speak) and the next range is alled \nearultraviolet," the etymology of whih is obvious. Next omes \far ultraviolet" whih fades into\soft x-rays" and in turn \hard x-rays" and �nally \gamma rays" as the frequeny inreasesand the wavelength gets shorter. Note all the di�erent kinds of \rays" that are all just otherforms of light | i.e. EM waves | with di�erent wavelengths!

Figure 14.8 The eletromagneti spetrum. Note logarithmi wavelength and frequeny sales.14.10 ReetionThe simplest thing waves do is to reflet o� at surfaes. Sine billiard balls do the samething quite niely, this is not a partiularly distintive behaviour of waves | whih was probablyone of the reasons why Newton was onvined that light onsisted of partiles.17 The reetionof waves looks something like Fig. 14.9.The inoming wave vetor ~k makes the same angle with the surfae (or, equivalently, with thediretion normal to the surfae) as the outgoing wavevetor ~k0:� = �0 (41)This is the most important property of reetion, and it an be stated in words thus:The inident [inoming℄ angle is equal to the reeted [outgoing℄ angle.17He was atually orret, but it is equally true that light onsists of waves. If you are hoping that these apparentlyontraditory statements will be reoniled with ommon sense by the Chapter on Quantum Mehanis, you are in fora disappointment. Common sense will have to be beaten into submission by the utterly implausible fats.
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Figure 14.9 Reetion of a wave from a at surfae.14.11 Refration

Figure 14.10 Refration of a wave at a boundary between two media where the propagation veloity() of the wave in the �rst medium is greater than that (0) in the seond medium. The diagram on theleft shows the wavefronts (\rests" of the waves) and the orresponding perpendiular wavevetors~k (inoming wave), ~k0 (transmitted wave) and ~k" (reeted wave). The diagram on the right showsthe angles between the wavevetors and the normal to the interfae.When a wave rosses a boundary between two regions in whih its veloity of propagationhas di�erent values, it \bends" toward the region with the slower propagation veloity. Thefollowing mnemoni image an help you remember the qualitative sense of this phenomenon,whih is known as refration: piture the wave front approahing the boundary as a yardstikmoving through some uid in a diretion perpendiular to its length. If one end runs into athiker uid �rst, it will \drag" that end a little so that the trailing end gets ahead of it, hangingthe diretion of motion gradually until the whole meter stik is in the thiker uid where it willmove more slowly.18Conversely, if one end emerges �rst into a thinner uid (where it an move faster) it will pik upspeed and the trailing end will fall behind. This piture also explains why there is no \bending"if the wave hits the interfae normally (at right angles). The details are revealed mathematially18Boy, is this ever Aristotelian!



14.11. REFRACTION 15

Figure 14.11 Refration of a wave at a boundary between two media where the propagation veloity() of the wave in the �rst medium is less than that (0) in the seond medium.(of ourse) in Snell's Law:19 sin(�)sin(�0) = 0 (42)where � is the angle of inidene of the inoming wave (the angle that ~k makes with the normalto the interfae), �0 is the angle that the refrated wavevetor ~k0 makes with the same normal, is the propagation veloity of the wave in the �rst medium and 0 is the propagation veloityof the wave in the seond medium.

19Snell's Law is normally expressed in terms of the index of refration n in eah medium:n sin(�) = n0 sin(�0);where (we now know) the index of refration is the ratio of the speed of light in vauum to the speed of light in themedium: n � 0 :The reason for inventing suh a semiirular de�nition was that when Willebrord Snell disovered this empirial rela-tionship in 1621 he had no idea what n was, only that every medium had its own speial value of n. (This is typial ofanything that gets the name \index.") I see no pedagogial reason to even de�ne the dumb thing.



16Another semi-obvious onsequene of the fatthat the \rests" of the waves remain ontinu-ous20 is that the wavelength gets shorter as thewave enters the \thiker" medium or longer asit enters a \thinner" medium. Another wayof putting this is that the frequeny stays thesame (and therefore so does the period T ) asthe wave rosses the boundary. Sine  = �=Tthis means that if the veloity dereases, sodoes the wavelength. One an follow this ar-gument a bit further to derive Snell's Lawfrom a ombination of geometry and logi. Ihaven't done this, but you might want to. . . .There is also always a reeted wave at any in-terfae, though it may be weak. The reetedwave is shown as dotted lines in Figs. 14.10and 14.11, where its wavevetor is denoted ~k".This phenomenon is familiar as a soure of an-noyane to anyone who has tried to wath tele-vision in a room with a sunny window faingthe TV sreen. However, it does have someredeeming features, as an be dedued from athoughtful analysis of Eq. (42). For instane, ifthe wave is emerging from a \thik" mediuminto a \thin" medium as in Fig. 14.11 (likelight emerging from glass into air), then thereis some inoming angle �, alled the ritialangle, for whih the refrated wave will atu-ally be parallel to the interfae | i.e. �0 = �=2(90Æ). This implies sin(�0) = 1 so that Snell'sLaw reads sin(�) = 0 (43)whih has a solution only if 0 >  | i.e.for emergene into a \thinner" medium witha higher wave propagation veloity, as spei-�ed earlier.What happens, qualitatively, is that as � getslarger and larger (loser and loser to \graz-ing inidene") the amplitude (strength) ofthe transmitted wave gets weaker and weaker,while the amplitude of the reeted wave getsstronger and stronger, until for inoming an-gles � � � there is no transmitted wave20A \rest" doesn't turn into a \trough" just beause thepropagation veloity hanges!

and the wave is entirely reeted. This phe-nomenon is known as total internal re-fletion and has quite a few pratial on-sequenes.Beause of total internal reetion, a �sh an-not see out of the water exept for a lim-ited \one" of vision overhead bounded bythe ritial angle for water, whih is aboutsin�1(1=1:33) or 49Æ. Lest this lend reklessabandon to �shermen, it should be kept inmind that the light \rays" whih appear toome from just under 49Æ from the vertialare atually oming from just aross the wa-ter's surfae, so the �sh has a pretty goodview of the surrounding environment | it justlooks a bit distorted. To observe this phe-nomenon with your own eyes, put on a gooddiving mask, arefully slip into a still pool andhold your breath until the surfae is perfetlyalm again. Looking up at the surfae, youwill see the world from the �sh's perspetive(exept that the �sh is probably a good dealless anoxi) | inside a one of about 49Æ fromthe vertial, you an see out of the water; butoutside that one, the surfae forms a perfetmirror!How total is total internal reetion? To-tal! If the surfae has no srathes et., thelight is perfetly reeted bak into the densermedium. This is how \light pipes" work |light put into one end of a long Luite rodwill follow the rod through bends and twists(as long as they are \gentle" so that the lightnever hits the surfae at less than the riti-al angle) and emerge at the other end attenu-ated only by the absorption in the Luite itself.Even better transmission is ahieved in fiberoptis, where �ne threads of speial glassare prepared with extremely low absorptionfor the wavelengths of light that are used tosend signals down them. A faint pulse of lightsent into one end of a �ber opti transmissionline will emerge many kilometers down the linewith nothing \leaking out" in between. (Thisfeature is espeially attrative to those whodon't want their onversations bugged, or so I



14.13. INTERFERENCE 17am told.) Another appliation was invented byLorne Whitehead while he was a UBC Physisgraduate student: by an ingenious trik he wasable to make a large-diameter hollow LightPipe [trademark℄ whih avoids even the smalllosses in the Luite itself! Using this trik he isable to \pipe" large amounts of light from sin-gle (eÆient) light soures [inluding rooftopsolar olletors℄ into other areas [like the inte-riors of oÆe buildings℄ using stritly passiveomponents that do not wear out. He foundeda ompany alled TIR | see if you an guesswhat the aronym stand for!14.12 Huygens' PrinipleAt the beginning of this hapter we pituredonly plane waves, in whih the wavefronts(\rests" of the waves) form long straight lines(or, in spae, at planes) moving along to-gether in parallel (separated by one wave-length �) in a ommon diretion k̂. One goodreason for stiking to this desription for aslong as possible (and returning to it everyhane we get) is that it is so simple | wean write down an expliit formula for the am-plitude of a plane wave as a funtion of timeand spae whose qualitative features are read-ily apparent (with a little e�ort). Anothergood reason has to do with the fat that allwaves look pretty muh like plane waves whenthey are far from their origin.21 We will omebak to this shortly. A �nal reason for our loveof plane waves is that they are so easily relatedto the idea of \rays."In geometrial optis it is onvenient topiture the wavevetor ~k as a \ray" of light(though we an adopt the same notion for anykind of wave) that propagates along a straightline like a billiard ball. In fat, the analogybetween ~k and the momentum ~p of a partileis more than just a metaphor, as we shall see21This is sort of like the mathematial assertion that alllines look straight if we look at them through a powerfulenough mirosope.

later. However, for now it will suÆe to bor-row this imagery from Newton and ompany,who used it very e�etively in desribing theorpusular theory of light.22However, near any loalized soure of wavesthe outgoing wavefronts are nothing like planewaves; if the dimensions of the soure are smallompared to the wavelength then the outgo-ing waves look pretty muh like spherialwaves. For soures similar in size to �, thingsan get very ompliated.Christian Huygens (1629-1695) invented thefollowing gimmik for onstruting atualwavefronts from spherial waves:Huygens' Priniple:\All points on a wavefront an be onsid-ered as point soures for the prodution ofspherial seondary wavelets. At a latertime, the new position of the wavefrontwill be the surfae of tangeny to theseseondary wavelets."This may be seen to make some sense (tryit yourself) but its profound importane toour qualitative understanding of the behaviourof light was really brought home by Fresnel(1788-1827), who used it to explain the phe-nomenon of di�ration, whih we will disussshortly. But �rst, let's familiarize ourselveswith the simpler phenomena of interferene.14.13 InterfereneTo get more quantitative about this \additionof amplitudes," we make the following assump-tion, whih is ruial for the arguments to fol-low and is even valid for the most important22\Corpusles" are hypothetial partiles of light thatfollow trajetories Newton alled \rays," thus starting along tradition of naming every new form or radiation a\ray."



18kinds of waves, namely EM waves, under allbut the most extreme onditions:Linear Superposition of Waves:As several waves pass the same point inspae, the total amplitude at that pointat any instant is simply the sum of theamplitudes of the individual waves.For water waves this is not perfetly true (wa-ter waves are very peuliar in many ways) butto a moderately good approximation the am-plitude (height) of the surfae disturbane at agiven position and time is just the sum of theheights of all the di�erent waves passing thatpoint at any instant. This has some alarm-ing impliations for sailors! If you are sailingalong a oastline with steep li�s, the inom-ing swells are apt to be reeted bak out tosea with some eÆieny; if the reeted wavesfrom many parts of the shoreline happen to in-terfere onstrutively with the inoming swellsat the position of your boat, you an enounter\freak waves" many times higher than themean swell height. Experiened sailors staywell out from the oastline to avoid suh un-preditable interferene maxima.14.13.1 Interferene in TimeSuppose we add together two equal amplitudewaves with slightly di�erent frequenies!1 = �! + Æ=2 and !2 = �! � Æ=2 (44)where �! is the average frequeny and Æ is thedi�erene between the two frequenies. If wemeasure the ombined amplitude at a �xedpoint in spae, a little algebra reveals the phe-nomenon of beats. This is usually done withsin or os funtions and a lot of trigonomet-ri identities; let's use the omplex notationinstead | I �nd it more self-evident, at leastalgebraially:

Figure 14.12 Beats.
 (z; t) =  0 hei!1t + ei!2ti=  0 hei(�!+Æ=2)t + ei(�!�Æ=2)ti=  0 ei�!t he+i(Æ=2)t + e�i(Æ=2)ti= 2 0 ei�!t os[(Æ=2)t℄ (45)That is, the ombined signal onsists of an os-illation at the average frequeny, modulatedby an osillation at one-half the di�erene fre-queny. This phenomenon of \beats" is fa-miliar to any musiian, automotive mehanior pilot of a twin engine airraft.One seemingly ounterintuitive feature ofbeats is that the \envelope funtion"os[(Æ=2)t℄ has only half the angular frequenyof the di�erene between the two original fre-quenies. What we hear when two frequen-ies interfere is the variation of the sound in-tensity with time; and the intensity is pro-



14.13. INTERFERENCE 19portional to the square of the displaement.23Squaring the envelope e�etively doubles itsfrequeny (see Fig. 14.12) and so the detetedbeat frequeny is the full frequeny di�er-ene Æ = !1 � !2.This is a universal feature of waves and in-terferene: the deteted signal is the averageintensity, whih is proportional to the squareof the amplitude of the displaement osilla-tions; and it is the displaements themselvesthat add linearly to form the interferene pat-tern. Be sure to keep this straight.14.13.2 Interferene in Spae

Figure 14.13 A replia of Thomas Young's orig-inal drawing (1803) showing the interferene pat-tern reated by two similar waves being emitted\in phase" (going up and down simultaneously)from two soures separated by a small distane.The arrows point along lines of onstrutive in-terferene (rests on top of rests and troughsunderneath troughs) and the dotted lines indiate\lines of nodes" where the rests and troughsanel.Suppose spherial waves emanate from twopoint soures osillating in phase (one goes\up" at the same time as the other goes \up")23Atually the intensity is de�ned in terms of the av-erage of the square of the displaement over times longompared with the average frequeny �!. This makes senseas long as the beat frequeny Æ � �!; but if !1 and !2 di�erby an amount Æ � �! then it is hard to de�ne what is meantby a \time average". We will just duk this issue.

at the same frequeny, so that the two wave-generators are like synhronized swimmers inwater ballet.24 Eah will produe outgoingspherial waves that will interfere whereverthey meet.The qualitative situation is pitured inFig.14.13, whih shows a \snapshot" of twooutgoing spherial25 waves and the \rays" (~kdiretions) along whih their peaks and val-leys (or rests and troughs, whatever) oin-ide, giving onstrutive interferene. Thisdiagram aompanied an experimental obser-vation by Young of \interferene fringes"" (apattern of intensity maxima and minima ona sreen some distane from the two soures)that is generally regarded as the �nal proof ofthe wave nature of light.26If we want to preisely loate the angles atwhih onstrutive interferene ours (\inter-ferene maxima") then it is most onvenientto think in terms of \rays" (~k vetors) as pi-tured in Fig. 14.14.The mathematial riterion for onstrutiveinterferene is simply a statement that the dif-24This notion of being \in phase" or \out of phase" isone of the most arhetypal metaphors in Physis. It is soompelling that most Physiists inorporate it into theirthinking about virtually everything. A Physiist at a ok-tail party may be heard to say, \Yeah, we were 90Æ outof phase on everything. Eventually we alled it quits."This is slightly more subtle than, \. . . we were 180Æ out ofphase. . . " meaning diametrially opposed, opposite, an-elling eah other, destrutively interfering. To be \90Æout of phase" means to be moving at top speed when theother is sitting still (in SHM , this would mean to have allyour energy in kineti energy when the other has it all inpotential energy) and vie versa. The ~E and ~B �elds in alinearly polarized EM wave are 90Æ out of phase, as are the\push" and the \swing" when a resonane is being driven(like pushing a kid on a swing) at maximum e�et, so inthe right irumstanes \90Æ out of phase" an be produ-tive. . . . Just remember, \in phase" at the point of interestmeans onstrutive interferene (maximum amplitude) and\180Æ out of phase" at the point of interest means destru-tive interferene (minimum amplitude | zero, in fat, ifthe two waves have equal amplitude).25OK, they are irular waves, not spherial waves. Youtry drawing a piture of spherial waves!26Young's lassi experiment is in fat the arhetype forall subsequent demonstrations of wave properties, as shallbe seen in the Chapter(s) on Quantum Mehanis.
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Figure 14.14 Diagram showing the ondition foronstrutive interferene of two \rays" of thesame frequeny and wavelength � emitted inphase from two soures separated by a distaned. At angles for whih the di�erene in pathlength �` is an integer number (m) of wave-lengths, m�, the two rays arrive at a distant de-tetor in phase so that their amplitudes add on-strutively, maximizing the intensity. The aseshown is for m = 1.ferene in path length, �` = d sin#m, for thetwo \rays" is an integer number m of wave-lengths �, where the m subsript on #m is areminder that this will be a di�erent angle foreah value of m:d sin#m = m� : (46)(riterion for Construtive Interferene)Conversely, if the path length di�erene is ahalf-integer number of wavelengths, the twowaves will arrive at the distant detetor ex-atly out of phase and anel eah other out.The angles at whih this happens are given byd sin# destrm = �m + 12� � : (47)(riterion for Destrutive Interferene)

PhasorsWhat happens when oherent light omesthrough more than two slits, all equally spaeda distane d apart, in a line parallel to the in-oming wave fronts? The same riterion (46)still holds for ompletely onstrutive interfer-ene (what we will now refer to as the prini-pal maxima) but (47) is no longer a reliableriterion for destrutive interferene: eah su-essive slit's ontribution anels out that ofthe adjaent slit, but if there are an odd num-ber of slits, there is still one left over and theombined amplitude is not zero.Does this mean there are no angles where theintensity goes to zero? Not at all; but it isnot quite so simple to loate them. One wayof making this alulation easier to visualize(albeit in a rather abstrat way) is with thegeometrial aid of phasors: A single wave

Figure 14.15 A single \phasor" of length  0(the wave amplitude) preessing at a frequeny! in the omplex plane.an be expressed as  (x; t) =  0ei� where� = kx� !t+ � is the phase of the wave at a�xed position x at a given time t. (As usual,� is the \initial" phase at x = 0 and t = 0. Atthis stage it is usually ignored; I just retainedit one last time for ompleteness.) If we fo-us our attention on one partiular loation inspae, this single wave's \displaement"  atthat loation an be represented geometriallyas a vetor of length  0 (the wave amplitude)in the omplex plane alled a \phasor" As



14.13. INTERFERENCE 21time passes, the \diretion" of the phasor ro-tates at an angular frequeny ! in that ab-strat plane.There is not muh advantage to this geomet-rial desription for a single wave (exept per-haps that it engages the right hemisphere ofthe brain a little more than the algebrai ex-pression) but when one goes to \add together"two or more waves with di�erent phases, ithelps a lot! For example, two waves of equal

Figure 14.16 Two waves of equal amplitude  0but di�erent phases �1 and �2 are representedas phasors in the omplex plane. Their ve-tor sum has the resultant amplitude � 0 and theaverage phase ��.amplitude but di�erent phases an be addedtogether algebraially as in Eq. (45)� =  0 hei�1 + ei�2i= 2 0 ei�� os(Æ=2)= � 0 ei�� (48)where � 0 = 2 0 os(Æ=2)�� � 12(�1 + �2)Æ � �2 � �1 : (49)That is, the ombined amplitude � 0 an beobtained by adding the phasors \tip-to-tail"like ordinary vetors. Like the original om-ponents, the whole thing ontinues to preess

in the omplex plane at the ommon frequeny!.We are now ready to use phasors to �nd theamplitude of an arbitrary number of waves ofarbitrary amplitudes and phases but a om-mon frequeny and wavelength interfering at agiven position. This is illustrated in Fig. 14.17for 5 phasors. In pratie, we rarely attempt
Figure 14.17 The net amplitude of a wave pro-dued by the interferene of an arbitrary numberof other waves of the same frequeny of arbi-trary amplitudes  j and phases �j an in prin-iple be alulated geometrially by \tip-to-tail"vetor addition of the individual phasors in theomplex plane.suh an arbitrary alulation, sine it annotbe simpli�ed algebraially.Instead, we onentrate on simple ombina-tions of waves of equal amplitude with well de-�ned phase di�erenes, suh as those produedby a regular array of parallel slits with an equalspaing between adjaent slits. Figure 14.18shows an example using 6 idential slits witha spaing d = 100�. The angular width of theinterferene pattern from suh widely spaedslits is quite narrow, only 10 mrad (10�2 ra-dians) between prinipal maxima where all 6rays are in phase. In between the prinipalmaxima there are 5 minima and 4 seondarymaxima; this an be generalized:The interferene pattern for N equallyspaed slits exhibits (N � 1) minima and(N � 2) seondary maxima between eahpair of prinipal maxima.
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Figure 14.18 The intensity pattern produed by the interferene of oherent light passing throughsix parallel slits 100 wavelengths apart. Phasor diagrams are shown for seleted angles. Notethat, while the phase angle di�erene Æ between rays from adjaent slits is a monotonially inreasingfuntion of the angle # (plotted horizontally) that the rays make with the \forward" diretion, thelatter is a real geometrial angle in spae while the former is a pure abstration in \phase spae".The exat relationship is Æ=2� = (d=�) sin# � (d=�)# for very small #. Note the symmetry aboutthe 3rd minimum at # � 5 mrad. At # � 10 mrad the intensity is bak up to the same value it hadin the entral maximum at # = 0; this is alled the �rst prinipal maximum. Then the wholepattern repeats. . . .It may be oneptually helpful to show the geometrial explanation of the 6-slit interferenepattern in Fig. 14.18 in terms of phasor diagrams, but learly the smooth urve shown there is notthe result of an in�nte number of geometrial onstrutions. It omes from an algebrai formulathat we an derive for an arbitrary angle # and a orresponding phase di�erene Æ = (2�d=�) sin#between rays from adjaent slits. The formula itself is obtained by analysis of a geometrialonstrution like that illustrated in Fig. 14.19 for 7 slits, eah of whih ontributes a wave ofamplitude a, with a phase di�erene of Æ between adjaent slits.
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Figure 14.19 Phasor diagram for alulat-ing the intensity pattern produed by the interfer-ene of oherent light passing through 7 parallel,equally spaed slits.

Figure 14.20 Blowup of one of the isoselestriangles formed by a single phasor and two radiifrom the enter of the irumsribed irle to thetip and tail of the phasor.After adding all 7 equal-length phasors inFig. 14.19 \tip-to-tail", we an draw a vetorfrom the starting point to the tip of the �nalphasor. This vetor has a length A (the netamplitude) and makes a hord of the irum-sribed irle, interepting an angle� = 2� �N Æ ; (50)where in this ase N = 7. The radius r of theirumsribed irle is given bya2 = r sin Æ2! ; (51)

as an be seen from the blowup in Fig. 14.20;this an be ombined with the analogousA2 = r sin��2� (52)to give the net amplitudeA = a 24sin ��2�sin � Æ2�35 : (53)From Eq. (50) we know that �=2 = ��N Æ=2,and in general sin(� � �) = sin �, soA = a 24sin �N Æ2�sin � Æ2� 35 (54)where Æ = 2�  d�! sin# (55)Although the drawing shows N = 7 phasors,this result is valid for an arbitrary number Nof equally spaed and evenly illuminated slits.


