
Review of Vectors

• Vector Notation: a vector quantity is one that
has both magnitude and direction. Another (equiva-
lent) way of putting it is that a vector quantity has
several components in orthogonal (perpendicular) direc-
tions. The idea of a vector is very abstract and general;
one can define useful vector spaces of many sorts, some
with an infinite number of orthogonal basis vectors, but
the most familiar types are simple 3-dimensional quan-
tities like position, speed, momentum and so on. The
conventional notation for a vector is ~A, sometimes writ-
ten ~A or ~A or A but most clearly recognizable when in
boldface with a little arrow over the top. On the black-
board a vector may be written with a tilde underneath,
which is hard to generate in LATEX.

• Unit Vectors: In Cartesian coordinates (x, y, z) a

vector ~A can be expressed in terms of its three scalar
components Ax, Ay, Az and the corresponding unit vec-

tors ı̂, ̂, k̂ (sometimes written as x̂, ŷ, ẑ or occasionally
as x̂1, x̂2, x̂3) thus:

~A = ı̂Ax + ̂Ay + k̂Az (1)

where the little “hat” over a symbol means (in this con-
text) that it has unit magnitude and thus imparts only

direction to a scalar like Ax. 1

A unit vector â can be formed from any vector ~a by
dividing it by its own magnitude a:

â =
~a

a
where a = |~a| =

√
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y
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z

. (2)

Already we have used a bunch of concepts before defin-
ing them properly, the usual chicken-egg problem with
mathematics. Let’s try to catch up:

• Multiplying or Dividing a Vector by a Scalar:
Multiplying a vector ~A by a scalar b has no effect on
the direction of the result (unless b = 0) but only on
its magnitude and/or the units in which it is measured
— if b is a pure number, the units stay the same; but
multiplying a velocity by a mass (for instance) produces
an entirely new quantity, in that case the momentum.

Dividing a vector by a scalar c is the same as multiplying

it by 1/c.

This type of product always commutes: ~Ab = b~A.

1There are many choices of coordinates and unit vectors, such
as cylindrical (r, θ, z) and spherical (r, θ, φ) coordinates, but only
in the simple Cartesian coordinates are the directions of the unit
vectors permanently fixed.

• Adding or Subtracting Vectors: In two dimen-
sions one can draw simple diagrams depicting “tip-to-
tail” or “parallelogram law” vector addition (or subtrac-
tion); this is not so easy in 3 dimensions,

so we fall back on the algebraic method of adding com-

ponents. Given ~A from Eq. (1) and

~B = ı̂Bx + ̂By + k̂Bz (3)

we write

~A + ~B = ı̂(Ax + Bx) + ̂(Ay + By) + k̂(Az + Bz) . (4)

Subtracting ~B from ~A is the same thing as adding −~B.

• Multiplying Two Vectors . . .

. . . to get a Scalar: we just add together the products
of the components,

~A · ~B = AxBx

+ AyBy

+ AzBz , (5)

also known as the “dot product”, which commutes:
~A · ~B = ~B · ~A.

. . . to get a Pseudovector:

~A × ~B = ı̂(AyBz − AzBy)
+ ̂(AzBx − AxBz)

+ k̂(AxBy − AyBx) . (6)

This “cross product” is actually a pseudovector (or,
more generally, a tensor), because (unlike the nice
dot product) it has the unsettling property of not

commuting (~A× ~B = −~B × ~A) but we often treat
it like just another vector.


