Torque on a Current Loop

d**F** = **I** d**ℓ** × **B**

Picture a square loop ℓ on a side in a uniform magnetic field B:

is the loop's area times a unit normal vector, independent of the loop's shape.

Energy of a Magnetic Moment

The torque $\tau = \mu \times B$ "tries" to rotate μ until it is parallel with B.

As usual we calculate **angular work** as $dW = \tau d\theta$. If $d\theta$ is in the direction shown,

dW is negative and the potential energy change dU = -dW is positive. Since $|\tau| = \mu B \sin \theta$ is a function of θ , we must integrate $dU = \mu B \sin \theta d\theta$ or $dU = -\mu B du$ where $u \equiv \cos \theta$ to get $U = -\mu B \cos \theta$. This can be written

This expression should be familiar from Thermal Physics. (Electrons, being negatively charged, have μ opposite to their spin.)

