Torque on a Current Loop

$$
\mathrm{d} \boldsymbol{F}=I \mathrm{~d} \boldsymbol{\ell} \times \boldsymbol{B}
$$

Picture a square loop ℓ on a side in a uniform magnetic field B :

is the loop's area times a unit normal vector, independent of the loop's shape.

Energy of a Magnetic Moment

The torque $\boldsymbol{\tau}=\boldsymbol{\mu} \times \boldsymbol{B}$ "tries" to rotate $\boldsymbol{\mu}$ until it is parallel with \boldsymbol{B}. As usual we calculate angular work as $\mathrm{d} W=\boldsymbol{\tau} \mathrm{d} \theta$. If $\mathrm{d} \theta$ is in the direction shown,

This can be written

$$
U=-\mu \cdot B
$$

This expression should be familiar from Thermal Physics. (Electrons, being negatively charged, have μ opposite to their spin.)

