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The Language of Math

Soon we will tackle the problem of mea-
surement, with all its pitfalls and practical
tricks. You may then sympathize with New-
ton, who took such delight in retreating into
the Platonic ideal world of pure mathemat-
ics, where relationships between “variables”
are not fraught with messy errors, but defined
by simple and elegant prescriptions. No mat-
ter that we are unable to measure these per-
fect relationships directly; this is merely an
unfortunate consequence of our imperfect in-
struments. (Hmmm. . . .) But first we need to
describe the notational conventions to be used
in this book for the language of Mathematics,
without which Physics would have remained
mired in the rich but confusing ambiguities of
natural language. Here is where we assemble
the symbols into structures that express (in
some conventional idiom) the relationships be-
tween the “things” the symbols represent.

Please do not feel insulted if the following re-
view seems too elementary for someone at your
level. I have always found it soothing to review
material that I already know well, and am usu-
ally surprised to discover how much I forgot in
such a short while. Also, I think you’ll find it
picks up a bit later on.

4.1 Arithmetic

We have already dwelt upon the formalism of
Number Systems in a previous Chapter, where
we reminded ourselves that just counting to
ten on paper involves a rather sophisticated
and elaborate representational scheme that we
all learned as children and which is now tacit
in our thought processes until we go to the
trouble to dismantle it and consider possible
alternatives.

Arithmetic is the basic algebra of Numbers
and builds upon our tacit understanding of
their conventional representation. However, it
would be emphatically wrong to claim that,
“Arithmetic is made up of Numbers, so there
is nothing to Arithmetic but Numbers.” Ob-
viously Arithmetic treats a new level of un-
derstanding of the properties of (and the re-
lationships between) Numbers — something
like the Frank Lloyd Wright house that was
not there in the bricks and mortar of which
it is built. [One can argue that in fact the
conceptual framework of Number Systems im-
plicitly contains intimations of Arithmetic, but
this is like arguing that the properties of atoms
are implicit in the behaviour of electrons; let’s
leave that debate for later.]

We learn Arithmetic at two levels: the actual
level (“If I have two apples and I get three more
apples, then I have five apples, as long as noth-
ing happens to the first two in the meantime.”)
and the symbolic level (“2+3=5”). The for-
mer level is of course both concrete (as in all
the examples) and profoundly abstract in the
sense that one learns to understand that two
of anything added to three of the same sort of
thing will make five of them, independent of
words or numerical symbols. The latter level is
more for communication (remember, we have
to adopt and adapt to a notational convention
in order to express our ideas to each other) and
for technology — i.e. for developing manipu-
lative tricks to use on Numbers.

Skipping over the simple Arithmetic I assume
we all know tacitly, I will use long division
as an example of the conventional technology
of Arithmetic.1 We all know (today) how to

1No doubt the useful lifetime of this example is only a
few more years, since many students now learn to divide
by punching the right buttons on a hand calculator, much
to the dismay of their aged instructors. I am not so up-
set by this — one arithmetic manipulation technology is
merely supplanting another — except that “long division”
is in principle completely understood by its user, whereas
few people have any idea what actually goes on inside an
electronic calculator. This dependence on mysterious and
unfamiliar technology may have unpleasant long-term psy-
chological impact, perhaps making us all more willing to
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do long division. But can we explain how it
works? Suppose you were Cultural Attaché to
Alpha Centauri IV, where the local intelligent
life forms were interested in Earth Math and
had just mastered our ridiculous decimal nota-
tion. They understand addition, subtraction,
multiplication and division perfectly and have
developed the necessary skills in Earth-style
gimmicks (carrying, etc.) for the first three,
but they have no idea how we actually go
about dividing one multi-digit number by an-
other. Try to imagine how you would explain
the long division trick. Probably by example,
right? That’s how most of us learn it. Our
teacher works out beaucoup examples on the
blackboard and then gives us beaucoup home-
work problems to work out ourselves, hope-
fully arrayed in a sequence that sort of leads
us through the process of induction (not a part
of Logic, according to Karl Popper, but an
important part of human thinking nonethe-
less) to a bootstrap grasp on the method.
Nowhere, in most cases, does anyone give us
a full rigourous derivation of the method, yet
we all have a deep confidence in its universal-
ity and reliability — which, I hasten to add,
I’m sure can be rigourously derived if we take
the trouble. Still, we are awfully trusting. . . .

The point is, as Michael Polanyi has said, “We
know more than we can tell.” The tacit knowl-
edge of Arithmetic that you possess represents
an enormous store of

• sophisticated abstract understanding

• arbitrary conventions of representational
notation

• manipulative technology

that have already coloured your thought pro-
cesses in ways that neither you nor anyone else

accept the judgements of authority figures without ques-
tion. . . . But in Mathematics, as long as you have once

satisfied yourself completely that some technology is in-
deed trustworthy and reliable, of course you should make
use of it! (Do you know that your calculator always gives
the right answers. . . ?)

will ever be able to fathom. We are all brain-
washed by our Grammar school teachers!2

This book, if it is of any use whatsoever, will
have the same sort of effect: it will “warp”
your thinking forever in ways that cannot be
anticipated. So if you are worried about be-
ing “contaminated” by Scientism (or whatever
you choose to label the paradigms of the sci-
entific community) then stop reading immedi-
ately before it is too late! (While you’re at it,
there are a few other activities you will also
have to give up. . . .)

4.2 Geometry

In Grammar school we also learn to recog-
nize (and learn the grammar of) geometrical
shapes. Thus the Right Hemisphere also gets
early training. Later on, in High School, we
get a bit more insight into the intrinsic prop-
erties of Euclidean space (i.e. the “flat” kind
we normally seem to be occupying).

4.2.1 Areas of Plane Figures

• The area A of a square is the square of
the length ℓ of any one of its 4 sides:
A = ℓ 2. In fact the question of which
word “square” is named after which is
a sort of chicken vs. egg problem for
which there is no logical resolution (even
though there may be an historically cor-
rect etymological answer).

• The area A of a rectangle (a bit more
general) is the product of the length b of

2It occurs to me that Grammar school is called Gram-
mar school because it is where we learn grammar — i.e.

the conventional representations for things, ideas and the
relationships between them, whether in verbal language,
written language, mathematics, politics, science or social
behaviour. These are usually called “rules” or even (when
a particularly heavy-handed emphasis is desired) “laws” of
notation or manipulation or behaviour. We also pick up
a little technology, which in this context begins to look
pretty innocuous!
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a long side (“base”) and the length h of
a short side (“height”): A = bh.

• The area A of a triangle with base b and
height h (measured from the opposite
vertex down perpendicular to the base)
is A = 1

2
bh. (This is easy to see for a

right triangle, which is obviously half a
rectangle, sliced down the diagonal. You
may want to convice yourself that it is
also true for “any old triangle.”)

• The area A of a circle of radius r is given
by A = πr2 where π is a number, ap-
proximately 3.14159 [it takes an infinite
number of decimal digits to get it ex-
actly; this is because π is an irrational
number3 — i.e. one which cannot be ex-
pressed as a ratio of integers], defined in
turn to be the ratio of the circumference
ℓ of a circle to its diameter d: π = ℓ/d
or ℓ = πd.

Were you able to visualize all these simple
plane (2-dimensional) shapes “in your head”
without resort to actual drawings? If so, you
may have a “knack” for geometry, if not Ge-
ometry. If it was confusing without the pic-
tures, they are provided in Fig. 4.1 with the
appropriate labels.

Figure 4.1 A few plane geometrical shapes,
with labels.

3I do not know the proof that π is an irrational number,
but I have been told by Mathematicians that it is, and I
have never had any cause to question them. In principle,
this is reprehensible (shame on me!) but I am not aware of
any practical consequences one way or the other; if anyone
knows one, please set me straight!

4.2.2 The Pythagorean Theorem:

The square of the length of the hy-

potenuse of a right triangle is equal

to the sum of the squares of the

lengths of the two shorter sides.

I.e. for the Left Hemisphere we have

c2 = a2 + b2 (1)

where a, b and c are defined by the labelled
picture of a right triangle, shown in Fig. 4.2,
which cathects the Right Hemisphere and gets
the two working together.

Figure 4.2 A right triangle with hypotenuse c
and short sides a and b. The right angle is
indicated and the angle θ is defined as shown.
Note that a is always the (length of the) side
“across from” the vertex forming the angle θ.
This convention is essential in the trigonomet-
ric definitions to follow.

4.2.3 Solid Geometry

Most of us learned how to calculate the vol-
umes of various solid or 3-dimensional objects
even before we were told that the name for
the system of conventions and “laws” govern-
ing such topics was “Solid Geometry.” For in-
stance, there is the cube, whose volume V is
the cube (same chicken/egg problem again) of
the length ℓ of one of its 8 edges: V = ℓ 3.
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Similarly, a cylinder has a volume V equal to
the product of its cross-sectional area A and its
height h perpendicular to the base: V = Ah.
Note that this works just as well for any shape
of the cross-section — square, rectangle, tri-
angle, circle or even some irregular oddball
shape.

If you were fairly advanced in High School
math, you probably learned a bit more ab-
stract or general stuff about solids. But
the really deep understanding that (I hope)
you brought away with you was an aware-
ness of the qualitative difference between 1-
dimensional lengths, 2-dimensional areas and
3-dimensional volumes. This awareness can be
amazingly powerful even without any “hairy
Math details” if you consider what it implies
about how these things change with scale.4

Figure 4.3 Triangular, square and circular
right cylinders.

4For instance, it explains easily why the largest animals
on Earth have to live in the sea, why insects can lift so
many times their own weight, why birds have an easier
time flying than airliners, why bubbles form in beer and
how the American nuclear power industry got off to a bad
start. All in due time. . . .

4.3 Algebra 1

A handy trick for introducing Algebra to
young children (who have not yet learned that
it is supposed to be too hard for them) is to
phrase a typical Algebra problem in the fol-
lowing way: “I’m thinking of a number, and
its name is ‘x’ . . . so if 2x + 3 = 7, what is
x?” (You may have to spend a little time ex-
plaining the notational conventions of equa-
tions and that 2x means 2 times x.) Most
7-year-olds can then solve this problem by in-
spection (my son and daughter both could!)
but they may not be able to tell you how
they solved it. This suggests either that early
Arithmetic has already sown the seeds of alge-
braic manipulation conventions or that there
is some understanding of such concepts “wired
in” to our brains. We will never know how
much of each is true, but certainly neither is
entirely false!

What we learn in High School Algebra is to ex-
amine how we solve problems like this and to
refine these techniques by adapting ourselves
to a particular formalism and technology. Un-
fortunately our intuitive understanding is of-
ten trampled upon in the process — this hap-
pens when we are actively discouraged from
treating the technology as a convenient rep-
resentation for what we already understand,
rather than a definition of correct procedure.

In Algebra we learn to “solve” equations.
What does that mean? Usually it means that
we are to take a (relatively) complicated equa-
tion that has the “unknown” (often but not
always called “x”) scattered all over the place
and turn it into a (relatively) simple equation
with x on the left-hand side by itself and a
bunch of other symbols (not including x) on
the right-hand side of the “=” sign. Obviously
this particular format is “just” a convention.
But the idea is independent of the representa-
tion: “solve” for the “unknown” quantity, in
this case x.

There are a few basic rules we use to “solve”
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problems in Algebra; these are called “laws”
by Mathematicians who want to emphasize
that you are not to question their content or
representation.

• Definition of Zero:

a − a = 0 (2)

• Definition of Unity:

a

a
= 1 (3)

• Commutative Laws:5

a + b = b + a (4)

and ab = ba (5)

• Distributive Law:

a(b + c) = ab + bc (6)

• Sum or Difference of Two Equa-

tions: Adding (or subtracting) the
same thing from both sides of an equa-
tion gives a new equation that is still
OK.

+ (
x

x

−a =
a =

=

b
a
b + a

)
(7)

− (
x

x

+c =
c =

=

d
c
d − c

)
(8)

5Note that division is not commutative: a/b 6= b/a!
Neither is subtraction, for that matter: a − b 6= b − a.
The Commutative Law for multiplication, ab = ba, holds
for ordinary numbers (real and imaginary) but it does not

necessarily hold for all the mathematical “things” for which
some form of “multiplication” is defined! For instance, the
group of rotation operators in 3-dimensional space is not

commutative — think about making two successive rota-
tions of a rigid object about perpendicular axes in different
order and you will see that the final result is different! This
seemingly obscure property turns out to have fundamental
significance. We’ll talk about such things later.

• Product or Ratio of Two Equa-

tions: Multiplying (or dividing) both
sides of an equation by the same thing
also gives a new equation that is still OK.

× (
x/a =

a =
x =

b
a
ab

)
(9)

÷ (
cx =
c =
x =

d
c

d/c
)

(10)

These “laws” may seem pretty trivial (espe-
cially the first two) but they define the rules
of Algebra whereby we learn to manipulate the
form of equations and “solve” Algebra “prob-
lems.” We quickly learn equivalent shortcuts
like “moving a factor from the bottom of the
left-hand-side [often abbreviated LHS] to the
top of the right-hand side [RHS]:”

x − a

b
= c + d ⇒ x − a = b(c + d) (11)

and so on; but each of these is just a well-
justified concatenation of several of the funda-
mental steps. (Emergence!)

You may ask, “Why go to so much trouble
to express the obvious in such formal terms?”
Well, as usual the obvious is not necessarily
the truth. While the real, imaginary and com-
plex numbers may all obey these simple rules,
there are perfectly legitimate and useful fields
of “things” (usually some sort of operators)
that do not obey all these rules, as we shall see
much later in the course (probably). It is gen-
erally a good idea to know your own assump-
tions; we haven’t the time to keep reexamin-
ing them constantly, so we try to state them
as plainly as we can and keep them around for
reference “just in case. . . .”

4.4 Trigonometry

Trigonometry is a specialized branch of Ge-
ometry in which we pay excruciatingly close
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attention to the properties of triangles, in par-
ticular right triangles. Referring to Fig. 4.2
again, we define the sine of the angle θ (abbre-
viated sin θ) to be the ratio of the “far side” a
to the hypotenuse c and the cosine of θ (abbre-
viated cos θ) to be the ratio of the “near side”
b to the hypoteneuse c:

sin θ ≡
a

c
cos θ ≡

b

c
(12)

The other trigonometric functions can easily
be defined in terms of the sin and cos:

tangent: tan θ ≡
a

b
=

sin θ

cos θ

cotangent: cot θ ≡
b

a
=

sin θ

cos θ
=

1

tan θ

secant: sec θ ≡
c

b
=

1

cos θ

cosecant: csc θ ≡
c

a
=

1

sin θ

For the life of me, I can’t imagine why any-
one invented the cotangent, the secant and the
cosecant — as far as I can tell, they are totally
superfluous baggage that just slows you down
in any actual calculations. Forget them. [Ah-
hhh. I have always wanted to say that! Of
course you are wise enough to take my advice
with a grain of salt, especially is you want to
appear clever to Mathematicians. . . .]

The sine and cosine of θ are our trigonometric
workhorses. In no time at all, I will be wanting
to think of them as functions — i.e. when you
see “cos θ” I will want you to say, “cosine of
theta” and think of it as cos(θ) the same way
you think of y(x). Whether as simple ratios or
as functions, they have several delightful prop-
erties, the most important of which is obvious
from the Pythagorean Theorem:6

cos2 θ + sin2 θ = 1 (13)
6Surely you aren’t going to take my word for this! Con-

vince yourself that this formula is really true!

where the notation sin2 θ means the square of
sin θ — i.e. sin2 θ ≡ (sin θ) × (sin θ) — and
similarly for cos θ. This convention is adopted
to avoid confusion, believe it or not. If we
wrote “sin θ 2” it would be impossible to know
for sure whether we meant sin(θ2) or (sin θ)2;
we could always put parentheses in the right
places to remove the ambiguity, but in this
case there is a convention instead. (People al-
ways have conventions when they are tired of
thinking!)

I will need other trigonometric identities later
on, but they can wait — why introduce math
until we need it? [I have made an obvious
exception in this Chapter as a whole only
to “jump start” your Mathematical language
(re)training.]

4.5 Algebra 2

“I’m thinking of a number, and its name is ‘x’
. . . ” So if

ax2 + bx + c = 0, (14)

what is x? Well, we can only say, “It depends.”
Namely, it depends on the values of a, b and c,
whatever they are. Let’s suppose the dimen-
sions of all these “parameters” are mutually
consistent7 so that the equation makes sense.
Then “it can be shown” (a classic phrase if
there ever was one!) that the “answer” is gen-
erally8

x =
−b ±

√
b2 − 4ac

2a
. (15)

This formula (and the preceding equation that
defines what we mean by a, b and c) is known
as the Quadratic Theorem, so called because it
offers “the answer” to any quadratic equation

7In Mathematics we never worry about such things; all
our symbols represent pure numbers; but in Physics we
usually have to express the value of some physical quan-
tity in units which make sense and are consistent with the
units of other physical quantities symbolized in the same
equation!

8The ± symbol means that both signs (+ and −) should
represent legitimate answers.
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(i.e. one containing powers of x up to and
including x2). The power of such a general
solution is prodigious. (Work out a few ex-
amples!) It also introduces an interesting new
way of looking at the relationship between x
and the parameters a, b and c that determine
its value(s). Having x all by itself on one side
of the equation and no x’s anywhere on the
other side is what we call a “solution” in Alge-
bra. Let’s make a simpler version of this sort
of equation:

“I’m thinking of a number, and its name is ‘y’
. . . ” So if y = x2, what is y? The answer
is again, “It depends!” (In this case, upon
the value of x.) And that leads us into a new
subject. . . .

4.6 Calculus

In a stylistic sense, Algebra starts to become
Calculus when we write the preceding exam-
ple, y = x2, in the form

y(x) = x2

which we read as “y of x equals x squared.”
This is how we signal that we mean to think
of y as a function of x, and right away we are
leading into the terminology of Calculus. Re-
call the final sections of the preceding Chapter.

However, Calculus really begins when we start
talking about the rate of change of y as x
varies.

4.6.1 Rates of Change

One thing that is easy to “read off a graph”
of y(x) is the slope of the curve at any given
point x. Now, if y(x) is quite “curved” at the
point of interest, it may seem contradictory to
speak of its “slope,” a property of a straight
line. However, it is easy to see that as long as
the curve is smooth it will always look like a

straight line under sufficiently high magnifica-
tion. This is illustrated in Fig. 4.4 for a typical
y(x) by a process of successive magnifications.

Figure 4.4 A series of “zooms” on a segment
of the curve y(x) showing how the curved line
begins to look more and more like a straight
line under higher and higher magnification.

We can also prescribe an algebraic method for
calculating the slope, as illustrated in Fig. 4.5:
the definition of the “slope” is the ratio of
the increase in y to the increase in x on a
vanishingly small interval. That is, when x
goes from its initial value x0 to a slightly
larger value x0 + ∆x, the curve carries y from
its initial value y0 = y(x0) to a new value
y0 + ∆y = y(x0 + ∆x), and the slope of the
curve at x = x0 is given by ∆y/∆x for a
vanishingly small ∆x. When a small change
like ∆x gets really small (i.e. small enough
that the curve looks like a straight line on
that interval, or “small enough to satisfy what-
ever criterion you want,” then we write it dif-
ferently, as dx, a “differential” (vanishingly
small) change in x. Then the exact definition
of the SLOPE of y with respect to x at some
particular value of x, written in conventional
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Figure 4.5 A graph of the function y(x) show-
ing how the average slope ∆y/∆x is obtained
on a finite interval of the curve. By taking
smaller and smaller intervals, one can eventu-
ally obtain the slope at a point, dy/dx.

Mathematical language, is

dy

dx
≡ lim

∆x→0

∆y

∆x
≡ lim

∆x→0

y(x + ∆x) − y(x)

∆x
(16)

This is best understood by an example: con-
sider the simple function y(x) = x2. Then

y(x + ∆x) = (x + ∆x)2 = x2 + 2x∆x + (∆x)2

and y(x + ∆x) − y(x) = 2x∆x + (∆x)2.

Divide this by ∆x and we have

∆y

∆x
= 2x + ∆x.

Now let ∆x shrink to zero, and all that remains
is

∆y

∆x
−→
∆x→0

dy

dx
= 2x.

Thus the slope [or derivative, as mathemati-
cians are wont to call it] of y(x) = x2 is
dy/dx = 2x. That is, the slope increases lin-
early with x. The slope of the slope — which

we call9 the curvature, for obvious reasons —
is then trivially d(dy/dx)/dx ≡ d2y/dx2 = 2,
a constant. Make sure you can work this part
out for yourself.

We have defined all these algebraic solutions
to the geometrical problem of finding the slope
of a curve on a graph in completely abstract
terms — “x” and “y” indeed! What are x and
y? Well, the whole idea is that they can be
anything you want! The most common exam-
ples in Physics are when x is the elapsed time,
usually written t, and y is the distance trav-
elled, usually (alas) written x. Thus in an ele-
mentary Physics context the function you are
apt to see used most often is x(t), the posi-
tion of some object as a function of time. This
particular function has some very well-known
derivatives, namely dx/dt = v, the speed or
(as long as the motion is in a straight line!) ve-
locity of the object; and dv/dt ≡ d2x/dt2 = a,
the acceleration of the object. Note that both
v and a are themselves (in general) functions
of time: v(t) and a(t). This example so beau-
tifully illustrates the “meaning” of the slope
and curvature of a curve as first and sec-
ond derivatives that many introductory Cal-
culus courses and virtually all introductory
Physics courses use it as the example to ex-
plain these Mathematical conventions. I just
had to be different and start with something
a little more formal, because I think you will
find that the idea of one thing being a function
of another thing, and the associated ideas of
graphs and slopes and curvatures, are handy
notions worth putting to work far from their
traditional realm of classical kinematics.

9This differs from the conventional mathematical defi-
nition of curvature, κ ≡ dφ/ds, where φ is the tangential
angle and s is the arc length, but I like mine better, because
it’s simple, intuitive and useful. (OK, I’m a Philistine. So
shoot me. ;-) Thanks to Mitchell Timin for pointing this
out.


