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The Emergenceof MechanicsWhat use are Newton's \Laws" of Mechanics?Even a glib answer to that question can easily�ll a 1-year course, if you really want to know.My purpose here is merely to o�er some hintsof how people learned to apply Newton's Lawsto di�erent types of Mechanics problems, beganto notice that they were repeating certain calcu-lations over and over in certain wide classes ofproblems, and eventually thought of cute short-cuts that then came to have a life of their own.That is, in the sense of Michael Polanyi's TheTacit Dimension, a number of new paradigmsemerged from the technology of practical appli-cation of Newton's Mechanics.The mathematical process of emergence gener-ally works like this: we take the Second Lawand transform it using a formal mathematicalidentity operation such as \Do the same thingto both sides of an equation and you get a newequation that is equally valid." Then we think upnames for the quantities on both sides of the newequation and presto! we have a new paradigm.I will show three important example of this pro-cess, not necessarily the way they �rst were \dis-covered," but in such a way as to illustrate howsuch things can be done. But �rst we will needa few new mathematical tools.Some Math TricksDi�erentialsWe have learned that the symbols df anddx represent the coupled changes in f(x) andx, in the limit where the change in x (and conse-quently also the change in f) become in�nitesi-mally small. We call these symbols the di�er-

entials of f and x and distinguish them from�f and �x only in this sense: �f and �x canbe any size, but df and dx are always in�nites-imal | i.e. small enough so that we can treatf(x) as a straight line over an interval only dxwide.This does not change the interpretation of therepresentation dfdx for the derivative of f(x)with respect to x, but it allows us to think ofthese di�erentials df and dx as \normal" alge-braic symbols that can be manipulated in theusual fashion. For instance, we can writedf =  dfdx! dxwhich looks rather trivial in this form. However,suppose we give the derivative its own name:g(x) � dfdxThen the previous equation readsdf = g(x) dx or just df = g dxwhich can now be read as an expression of therelationship between the two di�erentials df anddx. Hold that thought.As an example, consider our familiar kinemati-cal quantitiesa � dvdt and v � dxdt :If we treat the di�erentials as simple algebraicsymbols, we can invert the latter de�nition andwrite 1v = dtdx:(Don't worry too much about what this \means"for now.) Then we can multiply the left side ofthe de�nition of a by 1=v and multiply the rightside by dt=dx and get an equally valid equation:av = dvdt � dtdx = dvdx



2or, multiplying both sides by v dx,a dx = v dv (1)which is a good example of amathematical iden-tity, in this case involving the di�erentials ofdistance and velocity. Hold that thought.AntiderivativesSuppose we have a function g(x) which we knowis the derivative [with respect to x] of some otherfunction f(x), but we don't know which | i.e.we know g(x) explicitly but we don't know [yet]what f(x) it is the derivative of. We may thenask the question, \What is the function f(x)whose derivative [with respect to x] is g(x)?"Another way of putting this would be to ask,\What is the antiderivative of g(x)?"1 Anothername for the antiderivative is the integral, whichis in fact the \o�cial" version, but I like theformer better because the name suggests howwe go about \solving" one.21This is a lot like knowing that 6 is some number n mul-tiplied by 2 and asking what n is. We �gure this out byasking ourselves the question, \What do I have to multiplyby 2 to get 6?" Later on we learn to call this \division" andexpress the question in the form, \What is n = 6=2?" but wemight just as well call it \anti-multiplication" because that ishow we solve it (unless it is too hard to do in our heads andwe have to resort to some complicated technology like longdivision).2Any introductory Calculus text will explain what an inte-gral \means" in terms of visual pictures that the right hemi-sphere can handle easily: whereas the derivative of f(x) isthe slope of the curve, the integral of g(x) is the area underthe curve. This helps to visualize the integral as the limit-ing case of a summation: imagine the area under the curveof g(x) from x0 to x being divided up into N rectangularcolumns of equal width �x = 1N (x � x0) and height g(xn),where xn = n�x is the position of the nth column. If Nis a small number, then PNn=1 g(xn)�x is a crude approxi-mation to the area under the smooth curve; but as N getsbigger, the columns get skinnier and the approximation be-comes more and more accurate and is eventually (as N !1)exact! This is the meaning of the integral sign:Z xx0 g(x)dx � limN!1 NXn=1 g(xn)�xwhere �x � 1N (x� x0) and xn = n�x:

For a handy example consider g(x) =k x. Then the antiderivative [integral] of g(x)with respect to x is f(x) = 12 k x2 + f0 [wheref0 is some constant] because the derivative [withrespect to x] of x2 is 2x and the derivative of anyconstant is zero. Since any combination of con-stants is also a constant, it is equally valid tomake the arbitrary constant term of the sameform as the part which actually varies with x,viz. f(x) = 12 k x2 + 12 k x20. Thus f0 is thesame thing as 12 k x20 and it is a matter of tastewhich you want to use.Naturally we have a shorthand way of writingthis. The di�erential equationdf = g(x) dxcan be turned into the integral equationf(x) = Z xx0 g(x) dx (2)which reads, \f(x) is the integral of g(x) withrespect to x from x0 to x." We have used therule that the integral of the di�erential of f [orany other quantity] is just the quantity itself,3in this case f : Z df = f (3)Our example then readsZ xx0 k x dx = k Z xx0 x dx = 12 k x2 � 12 k x20where we have used the feature that any con-stant (like k) can be brought \outside the inte-gral" | i.e. to the left of the integral sign Z .Now let's use these new tools to transform New-ton's Second Law into something more com-fortable.Why do I put this nice graphical description in a footnote?Because we can understand most of the Physics applicationsof integrals by thinking of them as \antiderivatives" and be-cause when we go to solve an integral we almost always do itby asking the question, \What function is this the derivativeof?" which means thinking of integrals as antiderivatives.This is not a complete description of the mathematics, but itis su�cient for the purposes of this course. [See? We reallydo \deemphasize mathematics!"]3This also holds for the integrals of di�erentials of vectors.



3Impulse and MomentumMultiplying a scalar times a vector is easy, itjust changes its dimensions and length | i.e. itis transformed into a new kind of vector withnew units but which is still in the same direc-tion. For instance, when we multiply the vectorvelocity ~v by the scalar mass m we get the vec-tormomentum ~p � m~v. Let's play a little gamewith di�erentials and the Second Law:~F = d~pdt :Multiplying both sides by dt and integratinggives~F dt = d~p ) Z tt0 ~F dt = Z ~p~p0 d~p = ~p� ~p0:(4)The left hand side of the �nal equation is thetime integral of the net externally applied force~F . This quantity is encountered so often in Me-chanics problems [especially when ~F is knownto be an explicit function of time, ~F (t)] that wegive it a name:Z tt0 ~F (t) dt � impulse due to applied force ~F(5)Our equation can then be read as a sentence:\The impulse created by the net externalforce applied to a system is equal to the mo-mentum change of the system."Conservation of MomentumThe Impulse and Momentum law is certainlya rather simple transformation of Newton's Sec-ond Law; in fact one may be tempted to thinkof it as a trivial restatement of the same thing.However, it is much simpler to use in many cir-cumstances. The most useful application, sur-prisingly enough, is when there is no externalforce applied to the system and therefore no im-pulse and no change in momentum! In such

cases the total momentum of the system doesnot change. We call this the Law of Conser-vation of Momentum and use it much thesame as Descartes and Huygens did in the daysbefore Newton.4Momentum conservation goes beyond Newton'sFirst Law, though it may appear to be thesame idea. Suppose our \system" [trick word,that!] consists not of one object but of several.Then the \net" [another one!] momentum ofthe system is the vector sum of the momentaof its components. This is where the power ofmomentum conservation becomes apparent. Aslong as there are no external forces, there can beas many forces as we like between the componentparts of the system without having the slighteste�ect on their combined momentum. Thus, totake a macabre but traditional example, if welob a hand grenade through the air, just after itexplodes (before any of the fragments hit any-thing) all its pieces taken together still have thesame net momentum as before the explosion.The Law of Conservation of Momentumis particularly important in analyzing the colli-sions of elementary particles. Since such colli-sions are the only means we have for performingexperiments on the forces between such parti-cles, you can bet that every particle physicist isvery happy to have such a powerful (and simple-to-use!) tool.Example: Volkwagen-Cadillac ScatteringLet's do a simple example in one dimension [thusavoiding the complications of adding and sub-tracting vectors] based on an apocryphal butpossibly true story: A Texas Cadillac dealeronce ran a TV ad showing a Cadillac run-ning head-on into a parked Volkswagen Bug4It should be remembered that Ren�e Descartes and Chris-tian Huygens formulated the Law of Conservation ofMomentum before Newton's work on Mechanics. Theyprobably deserve to be remembered as the First ModernConservationists!



4at 100 km/h. Needless to say, the Bug wassquashed at. Figs. 11.1 and 11.2 show a simpli-�ed sketch of this event, using the \before-and-after" technique with which our new paradigmworks best. Figure 11.1 shows an elastic colli-sion, in which the cars bounce o� each other;Figure 11.2 shows a plastic collision in whichthey stick together. For quantitative simplicity

Figure 11.1 Sketch of a perfectly elastic collisionbetween a Cadillac initially moving at 100 km/hand a parked Volkswagen Bug. For an elasticcollision, the magnitude of the relative velocitybetween the two cars is the same before and af-ter the collision. [The fact that the cars look\crunched" in the sketch reects the fact thatno actual collision between cars could ever beperfectly elastic; however, we will use this limit-ing case for purposes of illustration.]we assume that the Cadillac has exactly twicethe mass of the Bug (M = 2m). In both casesthe net initial momentum of the \Caddy-Bugsystem" is MVi = 200m, where I have omit-ted the \km/h" units of Vi, the initial velocityof the Caddy. Therefore, since all the forces actbetween the components of the system, the totalmomentum of the system is conserved and thenet momentum after the collision must also be

Figure 11.2 A perfectly inelastic or plastic col-lision in which the cars stick together and moveas a unit after the collision.200m.In the elastic collision, the �nal relative veloc-ity of the two cars must be the same as beforethe collision [this is one way of de�ning such acollision]. Thus if we assume (as on the draw-ing) that both cars move to the right after thecollision, with velocities Vf for the Caddy andvf for the Bug, thenvf � Vf = 100 or vf = Vf + 100:Meanwhile the total momentum must be thesame as initially:MVf + mvf = 200m or2mVf + m(Vf + 100) = 200mor 3mVf = 100mgiving the �nal velocitiesVf = 3313 km/h and vf = 13313 km/h:In the plastic collision, the �nal system consistsof both cars stuck together and moving to the



5right at a common velocity vf . Again the totalmomentum must be the same as initially:(M +m)vf = 200m or3mvf = 200m orvf = 6623 km/h:Several features are worth noting: �rst, the �nalvelocity of the Bug after the elastic collision isactually faster than the Caddy was going whenit hit! If the Bug then runs into a brick wall,well. . . . For anyone unfortunate enough to beinside one of the vehicles the severity of the con-sequences would be worst for the largest suddenchange in the velocity of that vehicle | i.e. forthe largest instantaneous acceleration of the pas-senger. This quantity is far larger for both carsin the case of the elastic collision. This is why\collapsibility" is an important safety feature inmodern automotive design. You want your carto be completely demolished in a severe colli-sion, with only the passenger compartment leftintact, in order to minimize the recoil velocity.This may be annoyingly expensive, but it is niceto be around to enjoy the luxury of being an-noyed!Back to our story: The Cadillac dealer was,of course, trying to convince prospective VWbuyers that they would be a lot safer in aCadillac | which is undeniable, except inso-far as the Bug's greater maneuverability andsmaller \cross-section" [the size of the \target"it presents to other vehicles] helps to avoid ac-cidents. However, the local VW dealer tookexception to the Cadillac dealer's stated edito-rial opinion that Bugs should not be allowedon the road. To illustrate his point, he rana TV ad showing a Mack truck running intoa parked Cadillac at 100 km/h. The Cadillacwas quite satisfactorily squashed and the VWdealer suggested sarcastically that perhaps ev-eryone should be required by law to drive Macktrucks to enhance road safety. His point was welltaken.

Centre of Mass VelocityIf we calculate the total momentum of a com-posite system and then divide by the total mass,we obtain the velocity of the system-as-a-whole,which we call the velocity of the centre of mass.If we imagine \running alongside" the system atthis velocity we will be \in a reference framemoving with the centre of mass," where ev-erything moves together and bounces apart [orwhatever] with a very satisfying symmetry. Re-gardless of the internal forces of collisions, etc.,the centre of mass [CM ] will be motionless inthis reference frame. This has many convenientfeatures, especially for calculations, and has theadvantage that the ini�nite number of other pos-sible reference frames can all agree upon a com-mon description in terms of the CM . Whereexactly is the CM of a system? Well, wait a bituntil we have de�ned torques and rigid bodies,and then it will be easy to show how to �nd theCM .Work and EnergyWe have seen how much fun it is to multiply theSecond Law by a scalar (dt) and integrate theresult. What if we try multiplying through bya vector? As we have seen in the chapter onVectors, there are two ways to do this: thescalar or \dot" product ~A � ~B, so named for thesymbol � between the two vectors, which yields ascalar result, and the vector or \cross" product~A� ~B, whose name also reects the appearanceof the symbol � between the two vectors, whichyields a vector result. The former is easier, solet's try it �rst.In anticipation of situations where the appliedforce ~F is an explicit function of the position55In the section on Circular Motion we chose ~r to de-note the vector position of a particle in a circular orbit, usingthe centre of the circle as the origin for the ~r vector. Herewe are switching to ~x to emphasize that the current descrip-tion works equally well for any type of motion, circular or



6~x | i.e. ~F (~x) | let's try using a di�erentialchange in ~x as our multiplier:~F � d~x = m~a � d~x= md~vdt � d~x= md~v � d~xdt= md~v � ~v= m~v � d~vwhere we have used the de�nitions of ~a and ~vwith a little shifting about of the di�erential dtand a reordering of the dot product [which wemay always do] to get the right-hand side [RHS]of the equation in the desired form. A delightfulconsequence of this form is that it allows us toconvert the RHS into an explicitly scalar form:~v � d~v is zero if d~v ? ~v | i.e. if the change invelocity is perpendicular to the velocity itself,so that the magnitude of the velocity does notchange, only the direction. [Recall the case ofcircular motion!] If, on the other hand, d~v k~v, then the whole e�ect of d~v is to change themagnitude of ~v, not its direction. Thus ~v � d~vis precisely a measure of the speed v times thedi�erential change in speed, dv:~v � d~v = v dv (6)so that our equation can now be written~F � d~x = mv dvand thereforeZ ~x~x0 ~F � d~x = m Z vv0 v dv = m�12v2 � 12v20� (7)(Recall the earlier discussion of an equivalentantiderivative.)otherwise. The two notations are interchangeable, but wetend to prefer ~x when we are talking mainly about rectilin-ear (straight-line) motion and ~r when we are referring ourcoordinates to some centre or axis.

Just to establish the connection to the mathe-matical identity a dx = v dv, we multiply thatequation through by m and get madx = mv dv.Now, in one dimension (no vectors needed) weknow to set ma = F which gives us F dx =mv dv or, integrating both sides,Z xx0 F dx = 12mv2 � 12mv20which is the same equation in one dimension.OK, so what? Well, again this formula keptshowing up over and over when people set out tosolve certain types of Mechanics problems, andagain they �nally decided to recast the Law inthis form, giving new names to the left and rightsides of the equation. We call ~F �d~x the workdW done by exerting a force ~F through a dis-tance d~x [work is something we do] and we call12mv2 the kinetic energy T . [kinetic energy isan attribute of a moving mass] Let's emphasizethese de�nitions:Z ~x~x0 ~F � d~x � �W ; (8)the work done by ~F (~x) over a path from ~x0 to~x, and 12mv2 � T ; (9)the kinetic energy of mass m at speed v.Our equation can then be read as a sentence:\When a force acts on a body, the kineticenergy of the body changes by an amountequal to the work done by the force exertedthrough a distance."One nice thing about this \paradigm transfor-mation" is that we have replaced a vector equa-tion ~F = m~a by a scalar equation �W = �T .There are many situations in which the workdone is easily calculated and the direction of the�nal velocity is obvious; one can then obtain thecomplete \�nal state" from the \initial state" inone quick step without having to go through thedetails of what happens in between. Anotherclass of \before & after" problems solved!



7Example: The HillProbably the most classic example of how theWork and Energy law can be used is thecase of a ball rolling down a frictionless hill, pic-tured schematically in Fig. 11.3. Now, Galileo

Figure 11.3 Sketch of a ball rolling down a fric-tionless hill. In position 1, the ball is at rest. Itis then given an in�nitesimal nudge and startsto roll down the hill, passing position 2 on theway. At the bottom of the hill [position 3] it hasits maximum speed v3 , which is then dissipatedin rolling up the other side of the hill to position4. Assuming that it stops on a slight slope atboth ends, the ball will keep rolling back andforth forever.was fond of this example and could have givenus a calculation of the �nal speed of the ball forthe case of a straight-line path (i.e. the inclinedplane); but he would have thrown up his handsat the picture shown in Fig. 11.3! Consider onespot on the downward slope, say position 2: theFBD of the ball is drawn in the expanded view,showing the two forces ~N and ~W acting onthe mass m of the ball.6 Now, the ball does6It is unfortunate that the conventional symbol for theweight, ~W , uses the same letter as the conventional symbolfor the work, W . I will try to keep this straight by referring tothe weight always and only in its vector form and reservingthe scalar W for the work. But this sort of di�culty iseventually inevitable.

not jump o� the surface or burrow into it, so themotion is strictly tangential to the hill at everypoint.7 Meanwhile, a frictionless surface cannot,by de�nition, exert any force parallel to the sur-face; this is why the normal force ~N is calleda \normal" force | it is always normal [perpen-dicular] to the surface. So ~N ? d~x whichmeans that ~N � d~x = 0 and the normal forcedoes no work ! This is an important general rule.Only the gravitational force ~W does any workon the mass m, and since ~W = �mg ŷ is aconstant downward vector [where we de�ne theunit vector ŷ as \up"], it is only the downwardcomponent of d~x that produces any work atall. That is, ~W �d~x = �mg dy, where dy is thecomponent of d~x directed upward.8 That is, nomatter what angle the hill makes with the ver-tical at any position, at that position the workdone by gravity in raising the ball a di�erentialheight dy is given by dW = �mg dy [noticethat gravity does negative work going uphill andpositive work going downhill] and the net workdone in raising the ball a total distance �y isgiven by a rather easy integral:�W = �mg Z dy = �mg�ywhere �y is the height that the ball is raised inthe process. By our Law, this must be equal tothe change in the kinetic energy T � 12mv2 sothat 12mv2 � 12mv20 = �mg�y: (10)This formula governs both uphill rolls, in which�y is positive and the ball slows down, anddownhill rolls in which �y is negative andthe ball speeds up. For the example shown inFig. 11.3 we start at the top with v0 = v1 =0 and roll down to position 3, dropping the7For now, I speci�cally exclude cases where the ball getsgoing so fast that it does get airborne at some places.8Alas, another unfortunate juxtaposition of symbols! Weare using d~x to describe the di�erential vector positionchange and dy to describe the vertical component of d~x.Fortunately we have no cause to talk about the horizontalcomponent in this context, or we might wish we had usedd~r after all!



8height by an amount h in the process, so thatthe maximum speed (at position 3) is given by12mv23 = mgh or v3 = q2gh:On the way up the other side the process ex-actly reverses itself [though the details may becompletely di�erent!] in that the altitude onceagain increases and the velocity drops back tozero.The most pleasant consequence of this paradigmis that as long as the surface is truly frictionless,we never have to know any of the details aboutthe descent to calculate the velocity at the bot-tom! The ball can drop straight down, it canroll up and down any number of little hills [aslong as none of them are higher than its origi-nal position] or it can even roll through a tun-nel or \black box" whose interior is hidden andunknown | and as long as I guarantee a fric-tionless surface you can be con�dent that it willcome out the other end at the same speed asif it had just fallen the same vertical distancestraight down. The direction of motion at thebottom will of course always be tangential to thesurface.For me it seems impossible to imagine the ballrolling up and down the hill without starting tothink in terms of kinetic energy being stored upsomehow and then automatically re-emergingfrom that storage as fresh kinetic energy. ButI have already been indoctrinated into this wayof thinking, so it is hard to know if this is reallya compelling metaphor or just an extremely suc-cessful one. You be the judge. I will force myselfto hold o� talking about potential energy untilI have covered the second prototypical exampleof the interplay between work and energy.The Stretched SpringThe spring embodies one of Physics' premiereparadigms, the linear restoring force. That is, a

Figure 11.4 Sketch of a mass on a spring. Inthe leftmost frame the mass m is at rest and thespring is in its equilibrium position (i.e. neitherstretched nor compressed). [If gravity is pullingthe mass down, then in the equilibrium positionthe spring is stretched just enough to counteractthe force of gravity. The equilibrium positioncan still be taken to de�ne the x = 0 posi-tion.] In the second frame, the spring has beengradually pulled down a distance xmax and themass is once again at rest. Then the mass isreleased and accelerates upward under the in-uence of the spring until it reaches the equi-librium position again [third frame]. This time,however, it is moving at its maximum velocityvmax as it crosses the centre position; as soonas it goes higher, it compresses the spring andbegins to be decelerated by a linear restoringforce in the opposite direction. Eventually, whenx = �xmax, all the kinetic energy has been beenstored back up in the compression of the springand the mass is once again instantaneously atrest [fourth frame]. It immediately starts mov-ing downward again at maximum accelerationand heads back toward its starting point. In theabsence of friction, this cycle will repeat forever.



9force which disappears when the system in ques-tion is in its \equilibrium position" x0 [whichwe will de�ne as the x = 0 position (x0 � 0) tomake the calculations easier] but increases asx moves away from equilibrium, in such a waythat the magnitude of the force F is pro-portional to the displacement from equilibrium[F is linear in x] and the direction of F issuch as to try to restore x to the original po-sition. The constant of proportionality is calledthe spring constant, always written k. Thus(using vector notation to account for the direc-tionality) ~F = �k ~x (11)which is the mathematical expression of the con-cept of a linear restoring force. This is de�nitelyone to remember.Keeping in mind that the ~F given above isthe force exerted by the spring against anyoneor anything trying to stretch or compress it. Ifyou are that stretcher/compressor, the force youexert is �~F . If you do work on the spring9 bystretching or compressing it10 by a di�erentialdisplacement d~x from equilibrium, the di�er-ential amount of work done is given bydW = �~F � d~x = k ~x � d~x = k x dxwhich we can integrate from x = 0 (the equi-librium position) to x (the �nal position) toget the net work W :W = k Z x0 x dx = 12k x2 (12)Once you let go, the spring will do the sameamount of work back against the only thing try-ing to impede it | namely, the inertia of themass m attached to it. This can be used with9It is important to keep careful track of who is doing workon whom, especially in this case, because if you are carelessthe minus signs start jumping around and multiplying likecockroaches!10It doesn't matter which | if you stretch it out you haveto pull in the same direction as it moves, while if you compressit you have to push in the direction of motion, so either waythe force and the displacement are in the same direction andyou do positive work on the spring.

the Work and Energy Law to calculate thespeed vmax in the third frame of Fig. 11.4: sincev0 = 0,12mv2max = 12k x2max or v2max = km x2maxor vmax = s km jxmaxjwhere jxmaxj denotes the absolute value ofxmax (i.e. its magnitude, always positive). Notethat this is a relationship between the maximumvalues of v and x, which occur at di�erenttimes during the process.Love as a SpringFew other paradigms in Physics are so easy totranslate into \normal life" terms as the lin-ear restoring force. As a whimsical example,consider an intimate relationship between twolovers. In this case x can represent \emotionaldistance" | a di�cult thing to quantify but aneasy one to imagine. There is some equilibriumdistance x0 where at least one of the loversis most comfortable11 | this time, just to showhow it works, we will not choose x0 to be thezero position of x but leave it in the equationsexplicitly. When circumstances (usually work)force a greater emotional distance for a while,the lover experiences a sort of tension that pullshim or her back closer to the beloved. This is aperfect analogy to the linear restoring force:F = �k (x� x0)What few people seem to recognize is that this\force," like any linear restoring force, is sym-metric: it works the same in both directions, toofar apart and too close. When circumstancespermit a return to greater closeness, the loverrushes back to the beloved (�guratively | weare talking about emotional distance x here!)11Sadly, x0 is not always the same for both partners in therelationship; this is a leading cause of tension in such cases.[Doesn't this metaphor extend gracefully?]



10and very often \overshoots" the equilibrium po-sition x0 to get temporarily closer than is com-fortable. The natural repulsion that then oc-curs is no cause for dismay | you can't reallyhave an attraction without it | but some peo-ple seem surprised to discover that the attrac-tion that binds them to their beloved does notjust keep acting no matter how close they get;they are very upset that x cannot just keep get-ting closer and closer without limit.12 In laterchapters I will have much more to say about theoscillatory pattern that gets going [see Fig. 11.4]when the overshoot is allowed to occur withoutany friction to dissipate the energy stored in thestretched spring [a process known as damping ].But �rst I really must pick up another essen-tial paradigm that has been begging to be intro-duced.Potential EnergyImagine yourself on skis, poised motionless atthe top of a snow-covered hill: one way or an-other, you are deeply aware of the potential ofthe hill to increase your speed. In Physics welike to think of this obvious capacity as the po-tential for gravity to increase your kinetic en-ergy. We can be quantitative about it by go-ing back to the bottom of the hill and recallingthe long trudge uphill that it took to get to thetop: this took a lot of work, and we know theformula for how much: in raising your eleva-tion by a height h you did an amount of workW = mgh \against gravity" [where m is yourmass, of course]. That work is now somehow\stored up" because if you slip over the edge itwill all come back to you in the form of kineticenergy! What could be more natural than tothink of that \stored up work" as gravitational12I suspect that such foolishness is merely an example ofsingle-valued logic [closer = better] obsessively misapplied,rather than some more insidious psychopathology. But Icould be wrong!

potential energy Vg = mg h (13)which will all turn into kinetic energy if we allowh to go back down to zero?13We can then picture a skier in a bowl-shaped val-ley zipping down the slope to the bottom [Vg !T ] and then coasting back up to stop at the orig-inal height [T ! Vg] and (after a skillful ip-turn) heading back downhill again [Vg ! T ]. Inthe absence of friction, this could go on forever:Vg ! T ! Vg ! T ! Vg ! T ! . . . .The case of the spring is even more compelling,in its way: if you push in the spring a distance x,you have done some work W = 12k x2 \againstthe spring." If you let go, this work \comesback at you" and will accelerate a mass until allthe stored energy has turned into kinetic energy.Again, it is irresistible to call that \stored springenergy" the potential energy of the spring,Vs = 12k x2 (14)and again the scenario after the spring is re-leased can be described as a perpetual cycle ofVs ! T ! Vs ! T ! Vs ! T ! . . . .Conservative ForcesPhysicists so love their Energy paradigm thatit has been elevated to a higher status than theoriginal Second Law from which it was de-rived! In orer to make this switch, of course, wehad to invent a way of making the reverse deriva-tion | i.e. obtaining the vector force ~F ex-erted \spontaneously" by the system in questionfrom the scalar potential energy V of the sys-tem. Here's how: in one dimension we can forgetthe vector stu� and just juggle the di�erentials13The choice of a zero point for Vg is arbitrary, of course,just like our choice of where h = 0. This is not a problemif we allow negative potential energies [which we do!] sinceit is only the change in potential energy that appears in anyactual mechanics problem.



11in dWme = Fme dx, where the Wme is the workI do in exerting a force Fme \against the sys-tem" through a distance dx. Assuming that allthe work I do against the system is conservedby the system in the form of its potential energyV , then dV = dWme. On the other hand, theforce F exerted by the system [e.g. the forceexerted by the spring] is the equal and oppositereaction force to the force I exert: F = �Fme.The law for conservative forces in one dimensionis then F = �dVdx (15)That is, the force of (e.g.) the spring is minusthe rate of change of the potential energy withdistance.In three dimensions this has a little more com-plicated form, since V (~x) could in principlevary with all three components of ~x: x; y andz. We can talk about the three components in-dependently,Fx = �@V@x ; Fy = �@V@y and Fz = �@V@zwhere the notation @ is used to indicate deriva-tives with respect to one variable of a function ofseveral variables [here V (x; y; z)] with the othervariables held �xed. We call @V=@x the partialderivative of V with respect to x. In the samespirit that moved us to invent vector notationin the �rst place [i.e. making the notation morecompact], we use the gradient operator~r � x̂ @@x + ŷ @@y + ẑ @@z (16)to express the three equations above in one com-pact form: ~F = � ~rV (17)The gradient is easy to visualize in two dimen-sions: suppose you are standing on a real hill.Since your height h � z is actually propor-tional to your gravitational potential energy Vg,it is perfectly consistent to view the actual hillas a graph of the function Vg(x; y) of East-West coordinate x and North-South coordi-nate y. In this picture, looking down on the

hill from above, the direction of the gradient~rVg is uphill, and the magnitude of the gradi-ent is the slope of the hill at the position wherethe gradient is evaluated. The nice feature isthat ~rVg will automatically point \straightup the hill" | i.e. in the steepest direction.Thus �~rVg points \straight downhill" | i.e.in the direction a marble will roll if it is releasedat that spot! There are lots of neat tricks we canplay with the gradient operator, but for now I'llleave it to digest.FrictionWhat about not-so-conservative forces? In thereal world a lot of energy gets dissipated throughwhat is loosely known as friction. Nowhere willyou �nd an entirely satisfactory de�nition ofprecisely what friction is, so I won't feel guiltyabout using the cop-out and saying that it is thecause of all work that does not \get stored upas potential energy." That is, when I do workagainst frictional forces, it will not reappear askinetic energy when I \let go."Where does it go? We have already started get-ting used to the notion that energy is conserved,so it is disturbing to �nd some work just be-ing lost. Well, relax. The energy dissipated bywork against friction is still around in the formof heat, which is something like disordered po-tential and kinetic energy.14 We will talk moreabout heat a few chapters later.Torque and Angular MomentumFinally we come to the formally trickiest trans-formation of the Second Law, the one involv-ing the vector product (or \cross product") of~F with the distance ~r away from some ori-14[Not quite, but you can visualize lots of little atoms wig-gling and jiggling seemingly at random | that's heat, sortof.]



12gin15 \O." Here goes:~r � "d ~pdt = ~F # gives ~r � d~pdt = ~r � ~FNow, the distributive law for derivatives appliesto cross products, soddt [~r � ~p] = d~rdt � ~p + ~r � d~pdtbut d~rdt � ~v and ~p � m~vso d~rdt � ~p = m (~v � ~v) = 0because the cross product of any vector with it-self is zero.16 Thereforeddt [~r � ~p] = ~r � ~F :If we de�ne two new entities,~r � ~p � ~LO; (18)the Angular Momentum about Oand ~r � ~F � ~�O; (19)the Torque generated by ~F about O ;then we can write the above result in the formd~LOdt = ~�O (20)This equation looks remarkably similar to theSecond Law. In fact, it is the rotational ana-logue of the Second Law. It says that\The rate of change of the angularmomentum of a body about the ori-gin O is equal to the torque gener-ated by forces acting about O."15Note that everything we discuss in this case will be withreference to the chosen origin O, which may be chosen arbi-trarily but must then be carefully remembered!16Remember from the chapter on Vectors that only theperpendicular parts of two vectors contribute to the crossproduct. Any two parallel vectors have zero cross product.A vector crossed with itself is the simplest example.

So what? Well, if we choose the origin cleverlythis \new" Law gives us some very nice gen-eralizations. Consider for instance an examplewhich occurs very often in physics: the centralforce.Central ForcesMany [maybe even most] forces in nature are di-rected toward [or away from] some \source" ofthe force. An obvious example is Newton's Uni-versal Law of Gravitation, but there are manyothers evident, especially in elementary parti-cle physics.17 We call these forces \central" be-cause if we regard the point toward [or awayfrom] which the force points as the centre (ororigin O) of our coordinate system, from whichthe position vector ~r is drawn, the cross prod-uct between ~r and ~F (which is along r̂) isalways zero. That is,\A central force produces no torqueabout the centre; therefore the an-gular momentum about the centreremains constant under a centralforce."This is the famous Law of Conservation ofAngular Momentum. Note the limitation onits applicability.The Figure SkaterAgain, so what? Well, there are numerous exam-ples of central forces in which angular momen-tum conservation is used to make sense of other-wise counterintuitive phenomena. For instance,consider the classic image of the �gure skater do-ing a pirouette: she starts spinning with hands17For instance, the electrostatic force between two pointcharges obeys exactly the same \inverse square law" as grav-itation, except with a much stronger constant of proportion-ality and the inclusion of both positive and negative charges.We will have lots more to do with that later on!
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Figure 11.5 A contrived central-force problem.The ball swings around (without friction, ofcourse) on the end of a string �xed at the ori-gin O. The central force in the string cannotgenerate any torque about O, so the angularmomentum LO = mvr about O must re-main constant. As the string is pulled in slowly,the radius r gets shorter so the momentump = mv = mr! has to increase to compensate.and feet as far extended as possible, then pullsthem in as close to her body. As a result, eventhough no torques were applied, she spins muchfaster. Why? I can't draw a good �gure skater,so I will resort to a cruder example [shown inFig. 11.5] that has the same qualitative features:imagine a ball (mass m) on the end of a stringthat emerges through a hole in an axle which isheld rigidly �xed. The ball is swinging around ina circle in the end of the string. For an initial ra-dius r and an initial velocity v = r!, the initialmomentum is mr! and the angular momentumabout O is LO = mvr = mr2!. Now supposewe pull in the string until r0 = 12r. To keep thesame LO the momentum (and therefore thevelocity) must increase by a factor of 2, whichmeans that the angular velocity ! 0 = 4! sincethe ball is now moving at twice the speed buthas only half as far to go around the circumfer-ence of the circle. The period of the \orbit" hasthus decreased by a factor of four!Returning to our more �sthetic example of the�gure skater, if she is able to pull in all her mass

a factor of 2 closer to her centre (on average)then she will spin 4 times more rapidly in thesense of revolutions per second or \Hertz" (Hz).Kepler AgainA more formal example of the importance ofthe Law of Conservation of Angular Momen-tum under Central Forces is in its applicationto Celestial Mechanics, where the gravitationalattraction of the Sun is certainly a classic cen-tral force. If we always use the Sun as our originO, neglecting the inuence of other planets andmoons, the orbits of the planets must obey Con-servation of Angular Momentum about the Sun.Suppose we draw a radius r from the Sun tothe planet in question, as in Fig. 11.6. The rate

Figure 11.6 A diagram illustrating the areal ve-locity of an orbit. A planet (mass m) orbitsthe Sun at a distance r. the shaded area isequal to 12r � r d� in the limit of in�nitesimalintervals [i.e. as d� ! 0]. The areal veloc-ity [rate at which this area is swept out] is thus12r2d�=dt = 12r2!.at which this radius vector \sweeps out area" asthe planet moves is 12r2!, whereas the angularmomentum about the Sun is mr2!. The twoquantities di�er only by the constants 12 andm; therefore Kepler's empirical observation thatthe planetary orbits have constant \areal veloc-ity" is equivalent to the requirement that the an-gular momentum about the Sun be a conservedquantity.



14Rigid BodiesDespite the fact that all Earthly matter is com-posed mostly of empty space sprinkled lightlywith tiny bits of mass called atomic nuclei andeven tinier bits called electrons, the forces be-tween these bits are often so enormous that theyhold the bits rigidly locked in a regular arraycalled a solid. Within certain limits these arraysbehave as if they were inseperable and perfectlyrigid. It is therefore of some practical impor-tance to develop a body of understanding of thebehaviour of such rigid bodies under the inu-ence of external forces. This is where the equa-tions governing rotation come in.A Moment of Inertia, Please!Just as in the translational [straight-line mo-tion] part of Mechanics there is an inertial factorm which determines how much p you get for agiven v � _x and how much a � _v � �x you getfor a given F , so in rotational Mechanics thereis an angular analogue of the inertial factor thatdetermines how much LO you get for a given! � _� and how much � � _! you get for agiven �O. This angular inertial factor is calledthe moment of inertia about O [we must alwaysspecify the origin about which we are de�ningtorques and angular momentum] and is writtenIO with the prescriptionIO = Z r2? dm (21)where the integral represents a summation overall little \bits" of mass dm [we call these \masselements"] which are distances r? away froman axis through the point O. Here we discovera slight complication: r? is measured from theaxis, not from O itself. Thus a mass elementdm that is a long way from O but right onthe axis will contribute nothing to IO. Thiscontinues to get more complicated until we havea complete description of Rotational Mechanicswith IO as a tensor of inertia and lots of other

stu� I will never use again in this course. I be-lieve I will stop here and leave the �ner points ofRotational Mechanics for later Physics courses!Rotational AnalogiesIt is, however, worth remembering that all thenow-familiar [?] paradigms and equations of Me-chanics come in \rotational analogues:"Linear AngularVersion Version Namex � angle_x � v _� � ! angular velocity�x � _v � a �� � _! � � angularaccelerationm IO moment ofinertiap = mv LO = IO! angularmomentumF �O torque_p = F _LO = �O Second LawT = 12mv2 T = 12IO!2 rotational kineticenergydW = F dx dW = �d� rotational workF = �kx � = ��� torsional springlawVs = 12k x2 Vs = 12� �2 torsionalpotential energy



15StaticsThe enormous technology of Mechanical Engi-neering can be in some na��ve sense be reducedto the two equations_~p = ~F and _~LO = ~�O:Whole courses are taught on what amounts tothese two equations and the various tricks forsolving them in di�erent types of situations.Fortunately, this isn't one of them! Just togive a avour, however, I will mention the basicproblem-solving technique of Statics, the scienceof things that are sitting still!18 That means_~p = 0 and _~LO = 0 so that the relevant equa-tions are nowX ~F = 0 and X ~�O = 0where the P [summation] symbols emphasizethat there is never just one force or one torqueacting on a rigid body in equilibrium; if therewere, it (the force or torque) would be unbal-anced and acceleration would inevitably result!To solve complex three-dimensional Staticsproblems it is often useful to back away from ournice tidy vector formalism and explicitly writeout the \equations of equilibrium" in terms ofthe components of the forces along the x̂; ŷ andẑ directions as well as the torques about thex; y and z axes [which meet at the origin O]:XFx = 0 P�x = 0 (22)XFy = 0 P�y = 0 (23)XFz = 0 P�z = 0 (24)If you have some civil engineering to do, youcan work it out with these equations. Or hirean Engineer. I suggest the latter.18This is pretty boring from a Physicist's point of view, buteven Physicists are grateful when bridges do not collapse.

Physics as PoetryThis has been a long chapter; it needs some sum-mary remarks. All I have set out to do here isto introduce the paradigms that emerged fromNewton's Second Law through mathematicalidentity transformations. This process of emer-gence seems almost miraculous sometimes be-cause by a simple [?] rearrangement of previ-ously de�ned concepts we are able to create newmeaning that wasn't there before! This is one ofthe ways Physics bears a family resemblance toPoetry and the other Arts. The Poet also juxta-poses familiar images in a new way and createsmeaning that no one has ever seen before; thisis the �nest product of the human mind and oneof the greatest inspirations to the human spirit.In Physics, of course, the process is more slug-gish, because we insist on working out all therami�cations of every new paradigm shift andevaluating its elegance and utility in some detailbefore we decide to \go with it." This explainswhy it is so easy to describe just how the con-cepts introduced in this chapter emerged fromNewton's Mechanics, but not so easy to tidilydescribe the consequences (or even the nature)of more recent paradigm shifts whose implica-tions are still being discovered. There is a lot oftechnical overhead to creativity in Physics.A Physics paradigm shift is a profound alter-ation of the way Physicists see the world; butwhat do the rest of us care? It can be arguedthat such shifts have e�ects on our Reality evenif we choose to exclude Physics from our imme-diate awareness. Examples of this are plentifuleven in Classical Mechanics, but the �rst dra-matic social revolution that can be clearly seento have arisen largely from the practical con-sequences of breakthroughs in Physics was theIndustrial Revolution, the origins of which willbe discussed in the chapter on Thermal Physics.


