
        =  k    ,
where  k  is the 
dielectric constant.    
In free space, 

  =     .

This automatically 
takes care of the 
effect of dielectrics.

Electric Fields

r
Q

r

λ

r
 (independent of r )

σ



Electrostatic Potentials

r
Q

       relative to   Φ → 0
            as             r → ∞

in moving from  r0  to  r
r

λ

r

σ For finite objects,
 

λ = Q/L

σ = Q/A

 dΦ  = - E • dr

E = -    Φ

where

in moving from  r0  to  r



Note: each has the form

C = (   )(length)(const.)

Definition of 
capacitance:  

Q = C Φ

 Φ = Q/C 

C = Q/Φ

Capacitances

R
Q

 

R

λ

d

+σ

relative to a concentric
sphere at   R0 > R

relative to a coaxial 
cylinder at  R0 > R

-σ
between two oppositely 
charged parallel plates



Definition of 
capacitance:  

Q = C · ΔV

 ΔV = Q /C 

C = Q /ΔV

where we now 
use the more 
conventional 
“ΔV ” (for 
“voltage 
difference”) 
instead of “Φ”

Capacitors

d

+σ

-σ
between two oppositely 
charged parallel plates

Since all capacitors behave the same, we might 
as well pretend they are all made from two flat 
parallel plates, since that geometry is so easy to 
visualize.   Thus the conventional symbol for a 
capacitor in a circuit is just the side view of such 
a device: 

C



In SERIES: 

Charge is conserved    same ±Q on each plate.  
But ΔV = Q /C    different  ΔVi  across each Ci .  
“Voltage drops” add up, giving  ΔVtot = ΣiQ /Ci  or 
Ceff = Q /ΔVtot = 1 /ΣiCi

-1  -- i.e. ADD INVERSES!

Definition of 
capacitance:  

Q = C · ΔV

 ΔV = Q /C 

C = Q /ΔV

“Adding” Capacitors
In PARALLEL:

Same  ΔV = Qi /Ci  
across each Ci ; 
Qtot = ΣiQi =  ΔV ΣiCi 
or   Ceff = ΣiCi   --  i.e.  
ADD CAPACITANCES!

.

.

.

. . .



Capacitor as “Electric Spring”

We call    ΔV = -(1/C) Q   the “ElectroMotive Force” (EMF) 
across a charged capacitor.   If you actually think of  ΔV  as a 
sort of pseudoforce, then it is easy to think of  Q  as a sort of 
displacement of an “electric spring” whose equilibrium “position” 
is  Q=0,  in which case  (1/C)  is like an “electrostatic spring 
constant” providing a linear restoring “force” to the circuit.   
This may seem a highly stretched metaphor  (:-)  but in fact it is 
an excellent way to understand what happens with capacitors in 
circuits.    

+Q -Q
ΔV



E = σ/   = Q/A   

or  Q =   AE      

Electrostatic Energy Storage

d

+σ
= Q/A

-σ

It takes electrical work  dW = V dQ  to “push” a bit of charge  dQ  onto a 
capacitor  C  against the opposing EMF  V = -(1/C) Q  (where  Q  is the 
charge already on the capacitor).   This work is “stored” in the capacitor as  
dUE = - dW = (1/C) Q dQ .   If we start with an uncharged capacitor and 
add up the energy stored at each addition of  dQ  [i.e. integrate], we get 

  UE = ½ (1/C) Q2

just like with a stretched spring  --  (1/C)  is like a “spring constant”.

E Thus  
  UE = ½ (d/  A)(  AE)2

  = ½ (Ad)   E 2

or 
UE /Vol ≡ uE = ½   E 2


