Coulomb's Law

$$
\overrightarrow{\boldsymbol{F}}_{12}^{E}=k_{E} \frac{q_{1} q_{2}}{r_{12}^{2}} \hat{r}_{12}
$$

Think of q_{1} as the source of "electric field lines" E pointing away from it in all directions. (We assume it is a positive charge.)

Then $F_{12}=q_{2} E$ where we think of E as a vector field that is "just there for some reason" and q_{2} is a "test charge" placed at some position where the effect (F) of E is manifested. We can then write Coulomb's Law a bit more simply:

$$
\overrightarrow{\boldsymbol{E}}=k_{E} \frac{Q}{r^{2}} \hat{r}
$$

Fundamental Constants

$$
\begin{gathered}
c \equiv 2.99792458 \times 10^{8} \mathrm{~m} / \mathrm{s} \\
k_{E} \equiv 1 / 4 \pi \epsilon_{0}=c^{2} \times 10^{-7}=8.9875518 \times 10^{9} \mathrm{~V} \cdot \mathrm{~m} \cdot \mathrm{C}^{-1} \\
\epsilon_{0}=10^{7} / 4 \pi c^{2}=8.8542 \times 10^{-12} \mathrm{C}^{2} \cdot \mathrm{~N}^{-1} \cdot \mathrm{~m}^{-2}
\end{gathered}
$$

Electric Field on axis from a uniform RING of Charge Q

Electric Field on axis from a uniform RING of Charge Q

Electric Field on axis from a uniform RING of Charge Q

\perp components cancel

Electric Field on axis from a uniform RING

$$
E=k_{E} Q \ell\left(r^{2}+\ell^{2}\right)^{-3 / 2}
$$

of Charge Q

We should always check to see if we get the right behaviour in various limiting cases. Here there are two:

- $l \gg r: E \rightarrow k_{E} Q / \ell^{2}$ i.e. Coulomb's Law
- $\ell \rightarrow 0: \quad E \rightarrow 0$
i.e. the field cancels in the centre of the ring. (This follows by symmetry.)

Electric Field on axis from a uniform DISC of Charge Q

$$
d E=k_{E} d q \ell\left(r^{2}+\ell^{2}\right)^{-3 / 2}
$$

A DISC is composed of many RINGS.

$$
E=k_{E}\left(Q / \pi R^{2}\right) \cdot 2 \pi \ell \int_{0}^{R} r\left(r^{2}+\ell^{2}\right)^{-3 / 2} d r
$$

(not the easiest integral in the world, but "doable")
Result: $\quad E=2 \pi k_{E} \sigma\left[1-\ell\left(R^{2}+\ell^{2}\right)^{-1 / 2}\right]$

$$
d q=\sigma \cdot 2 \pi r d r
$$

Note limits as $\ell \gg R$ and $\ell \ll R$
Charge per unit area $\sigma=Q / \pi R^{2}$

Electric Field on axis from a uniform DISC of Charge Q

$$
E=2 \pi k_{E} \sigma\left[1-\ell\left(R^{2}+\ell^{2}\right)^{-1 / 2}\right]
$$

Note limits:

- $\ell \gg R$: Let $R / l \equiv \varepsilon \ll 1$; then

$$
\left(1+\varepsilon^{2}\right)^{-1 / 2} \approx 1-1 / 2 \varepsilon^{2}=1-R^{2} / 2 \ell^{2}
$$

$$
\text { giving } E=2 \pi k_{E}\left(Q / \pi R^{2}\right)\left[1-1+R^{2} / \ell^{2}\right] \text { or }
$$

$$
E=k_{E} Q / \ell^{2} \quad \text { i.e. Coulomb's Law }
$$

- $\ell \ll R: E \rightarrow 2 \pi k_{E} \sigma=\sigma / 2 \epsilon_{\circ}$ That is, when you get so close to the surface of the disc that the edges are lost in the distance, the field points away from the surface and is constant in space.
(There is an easier way to show this.)

