
Microstates & Reservoirs
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A large heat reservoir R at temperature τ
R
 

initially has a total energy U, but then a tiny 
bit ε

α
 of that energy is given to a small system 

S to put it into one particular fully specified 
microstate labelled “α” whose energy is ε

α
.
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The probability  Pα  of this configuration is proportional to the 

multiplicity of the combined system (R + S):  Ω = Ω
R 
· Ω

S
.  
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The Boltzmann Distribution

  Pα = C exp(-ε
α
/τ)

When a simple system is in thermal equilibrium with a large heat 
reservoir at temperature τ, the probability Pα of finding it in one 
particular fully specified microstate “α” of energy ε

α
 is 

proportional to  exp(-ε
α
/τ):

Where  C  is an unknown constant that can be found from the 
normalization condition    Σα Pα = 1.   (The sum of all such 

probabilities over all possible fully specified microstates of that 
system must be  1.)   This is why we try to pick a simple system!  



The Isothermal Atmosphere
An example of such a simple system is the height  h  of one oxygen 
(O2) molecule in the Earth's atmosphere.  (Not its kinetic energy, 
nor its spin or vibration, just its height!)  Then  h  is a complete 
specification of “α” and  ε

α
 = ε(h) = mgh,  where  m  is the mass of 

one O2 molecule and g = 9.81 m/s2.   If we pretend that the 
temperature of the atmosphere is uniform,  τ = 300 kB≈ 4•10-21 J, 
we conclude P(h) ~ exp(-mgh/τ).  The partial pressure p(h) of 
oxygen at altitude h is proportional to the probability of any given 
O2 molecule being at that altitude, so we don't need to normalize 
the Boltzmann distribution to calculate p(h) in terms of p(0):

   p(h) = p(0) e-h/h0     where    h0 = τ/mg



How Big are Molecules?
Empirical evidence from personal experience:  O2 concentration 
is markedly reduced (almost a factor of 3?) at 8000 m altitude.  
Conclusion:   h0 = τ/mg ≈ 8000 m    where   τ = 300 kB≈ 4•10-21 J  
and  g = 9.81 m/s2.    Thus   m ≈ 4•10-21/(9.81•8000) ≈ 5•10-26 kg   
is the mass of one oxygen molecule.   

Note that this was estimated using only the Boltzmann 
distribution and empirical data available to anyone.   

Looking it up gives  m(O2) = 32 AMU = 5.3137 •10-26 kg.

One mole of O2 = 32 gm = 0.032 kg = 6.022•1023 m(O2).

Avogadro's number


