Microstates \& Reservoirs

A large heat reservoir R at temperature τ_{R} initially has a total energy U, but then a tiny bit ε_{α} of that energy is given to a small system S to put it into one particular fully specified microstate labelled " α " whose energy is ε.

The probability P_{α} of this configuration is proportional to the multiplicity of the combined system ($R+S$): $\Omega=\Omega_{R} \cdot \Omega_{S}$.
But $\Omega_{s}=1$. So $P_{\alpha} \sim \Omega_{R}=e^{\sigma_{R}}$ where σ_{R} (the entropy of R) is now reduced by an amount $-\left(\partial \sigma_{R} / \partial U_{R}\right) \varepsilon_{\alpha}=-\varepsilon_{\alpha} / \tau_{R}$ from its original value before ε_{α} was taken away to form state " α ". Thus $P_{\alpha} \sim \exp \left(-\varepsilon_{\alpha} / \tau_{R}\right)$.

The Boltzmann Distribution

When a simple system is in thermal equilibrium with a large heat reservoir at temperature τ, the probability P_{α} of finding it in one particular fully specified microstate " α " of energy ε_{α} is proportional to $\exp \left(-\varepsilon_{\alpha} / \tau\right)$:

$$
P_{\alpha}=C \exp \left(-\varepsilon_{\alpha} / \tau\right)
$$

Where C is an unknown constant that can be found from the normalization condition $\Sigma_{\alpha} P_{\alpha}=1$. (The sum of all such probabilities over all possible fully specified microstates of that system must be 1.) This is why we try to pick a simple system!

The Isothermal Atmosphere

An example of such a simple system is the height h of one oxygen $\left(\mathrm{O}_{2}\right)$ molecule in the Earth's atmosphere. (Not its kinetic energy, nor its spin or vibration, just its height!) Then h is a complete specification of " α " and $\varepsilon_{\alpha}=\varepsilon(h)=m g h$, where m is the mass of one O_{2} molecule and $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$. If we pretend that the temperature of the atmosphere is uniform, $\tau=300 k_{\mathrm{B}} \approx 4 \cdot 10^{-21} \mathrm{~J}$, we conclude $P(h) \sim \exp (-m g h / \tau)$. The partial pressure $p(h)$ of oxygen at altitude h is proportional to the probability of any given O_{2} molecule being at that altitude, so we don't need to normalize the Boltzmann distribution to calculate $p(h)$ in terms of $p(0)$:

$$
p(h)=p(0) e^{-h / h_{0}} \quad \text { where } \quad h_{0}=\tau / m g
$$

How Big are Molecules?

Empirical evidence from personal experience: O_{2} concentration is markedly reduced (almost a factor of 3 ?) at 8000 m altitude. Conclusion: $h_{0}=\tau / m g \approx 8000 \mathrm{~m}$ where $\tau=300 k_{\mathrm{B}} \approx 4 \cdot 10^{-21} \mathrm{~J}$ and $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$. Thus $m \approx 4 \cdot 10^{-21} /(9.81 \cdot 8000) \approx 5 \cdot 10^{-26} \mathrm{~kg}$ is the mass of one oxygen molecule.

Note that this was estimated using only the Boltzmann distribution and empirical data available to anyone.

Looking it up gives $m\left(\mathrm{O}_{2}\right)=32 \mathrm{AMU}=5.3137 \cdot 10^{-26} \mathrm{~kg}$.
One mole of $\mathrm{O}_{2}=32 \mathrm{gm}=0.032 \mathrm{~kg}=6.022 \cdot 10^{23} \mathrm{~m}\left(\mathrm{O}_{2}\right)$.
Avogadro's number

