
WAVES

Two views of a wave.



Traveling Waves

The wave amplitude A is a function of position

~r and time t: A(~r, t). At any fixed position ~r, A

oscillates in time at a frequency ω. We can describe

this statement mathematically by saying that the

entire time dependence of A is contained in [the

real part of] a factor e−iωt (that is, the amplitude

at any fixed position obeys SHM).∗

∗Note that e+iωt would have worked just as well, since the real
part is the same as for e−iωt. The choice of sign does matter,
however, when we write down the combined time and space
dependence in Eq. (4), which see.



The oscillation with respect to position ~r at any

instant of time t is given by the analogous factor

ei~k·~r where ~k is the wave vector ; it points in the

direction of propagation of the wave and has a mag-

nitude (called the “wavenumber”) k given by

k =
2π

λ
(1)

where λ is the wavelength. Note the analogy be-

tween k and

ω =
2π

T
(2)

where T is the period of the oscillation in time at a

given point. You should think of λ as the “period

in space.”



We may simplify the above description by choosing

our coordinate system so that the x axis is in the

direction of ~k, so that† ~k · ~r = k x. Then the

amplitude A no longer depends on y or z, only on x

and t.

We are now ready to give a full description of the

function describing this wave:

A(x, t) = A0 eikx · e−iωt

or, recalling the multiplicative property of the expo-

nential function, ea · eb = e(a+b),

A(x, t) = A0 ei(kx−ωt). (3)

†In general ~k · ~r = xkx + yky + zkz. If ~k = k ı̂ then kx = k and

ky = kz = 0, giving ~k · ~r = k x.



To achieve complete generality we can restore the

vector version:

A(x, t) = A0 e
i
(

~k·~r−ωt
)

(4)

This is the preferred form for a general description

of a plane wave, but for present purposes the scalar

version (3) suffices. Using Eqs. (1) and (2) we can

also write the plane wave function in the form

A(x, t) = A0 exp

[

2πi

(

x

λ
−

t

T

)]

(5)

but you should strive to become completely com-

fortable with k and ω — we will be seeing a lot

of them in Physics!



Speed of Propagation

Neither of the images in Fig. 1 captures the most

important qualitative feature of the wave: namely,

that it propagates — i.e. moves steadily along in

the direction of ~k. If we were to let the snapshot

in Fig. 1b become a movie, so that the time de-

pendence could be seen vividly, what we would see

would be the same wave pattern sliding along the

graph to the right at a steady rate. What rate?

Well, the answer is most easily given in simple qual-

itative terms:



The wave has a distance λ (one wavelength) be-

tween “crests.” Every period T , one full wavelength

passes a fixed position. Therefore a given crest trav-

els a distance λ in a time T so the velocity of prop-

agation of the wave is just

c =
λ

T
or c =

ω

k
(6)

where I have used c as the symbol for the propaga-

tion velocity even though this is a completely general

relationship between the frequency ω, the wave vec-

tor magnitude k and the propagation velocity c of

any sort of wave, not just electromagnetic waves

(for which c has its most familiar meaning, namely

the speed of light).



This result can be obtained more easily by noting

that A is a function only of the phase θ of the os-

cillation,

θ ≡ kx − ωt (7)

and that the criterion for “seeing the same wave-

form” is θ = constant or dθ = 0. If we take the

differential of Eq. (7) and set it equal to zero, we

get

dθ = k dx − ω dt = 0 or k dx = ω dt

or
dx

dt
=

ω

k
.

But dx/dt = c, the propagation velocity of the

waveform. Thus we reproduce Eq. (6).



This treatment also shows why we chose e−iωt for

the time dependence so that Eq. (7) would describe

the phase: if we used e+iωt then the phase would

be θ ≡ kx + ωt which gives dx/dt = −c, — i.e.

a waveform propagating in the negative x direction

(to the left as drawn).



Since (kx−ωt) = k(x− ct), Eq. (4) can be written

A(x, t) = A0 eik(x−ct)

and we can extend the above argument to wave-

forms that are not of the ideal sinusoidal shape

shown in Fig. 1; in fact it is more vivid if one imag-

ines some special shape like (for instance) a pulse

propagating down a string at velocity c. As long as

A(x, t) is a function only of x′ = x − ct, no matter

what its shape, it will be static in time when viewed

by an observer traveling along with the wave‡ at ve-

locity c. This doesn’t require any elaborate deriva-

tion; x′ is just the position measured in such an

observer’s reference frame!
‡Don’t try this with an electromagnetic wave! The argument
shown here is explicitly nonrelativistic, although a more math-
ematical proof reaches the same conclusion without such re-
strictions.



The Wave Equation

Suppose we know that we have a traveling wave

A(x, t) = A0 cos(kx − ωt).

At a fixed position (x = const) we see SHM in

time:
(

∂2A

∂t2

)

x

= −ω2 A (8)

(Read: “The second partial derivative of A with

respect to time [i.e. the acceleration of A] with x

held fixed is equal to −ω2 times A itself.”) I.e. we

must have a linear restoring force.



Similarly, if we take a “snapshot” (hold t fixed) and

look at the spatial variation of A, we find the oscil-

latory behaviour analogous to SHM,
(

∂2A

∂x2

)

t

= − k2 A (9)

(Read: “The second partial derivative of A with

respect to position [i.e. the curvature of A] with t

held fixed is equal to −k2 times A itself.”)



Thus

A = −
1

ω2

(

∂2A

∂t2

)

x

= −
1

k2

(

∂2A

∂x2

)

t

.

If we multiply both sides by −k2, we get

k2

ω2

(

∂2A

∂t2

)

x

=

(

∂2A

∂x2

)

t

.

But ω = ck so
k2

ω2
=

1

c2
, giving

the Wave

Equation

∂2A

∂x2
−

1

c2
∂2A

∂t2
= 0 (10)

In words, the curvature of A is equal to 1/c2 times

the acceleration of A at any (x, t) point.



Whenever you see this differential equation govern-

ing some quantity A, i.e. where the acceleration of

A is proportional to its curvature, you know that

A(x, t) will exhibit wave motion!



Linear Superposition

As long as the acceleration is strictly proportional to

the curvature we have an important consequence:

several different waves can propagate independently

through the same medium. The displacement at

any given time and place is just the linear sum of

the displacements due to each of the simultaneously

propagating waves. This is known as the principle

of linear superposition, and it is essential to our

understanding of wave phenomena.



In general the overall displacement A(x, t) resulting

from the linear superposition of two waves

A1ei(k1x−ω1t) and A2ei(k2x−ω2t) is given by

A(x, t) = A1ei(k1x−ω1t) + A2ei(k2x−ω2t). (11)

Let’s look at a few simple examples.



Traveling vs. standing waves.



Standing Waves

Consider the case where A1 = A2 = A0, k1 =

k2 = k and ω1 = −ω2 = ω. That is, two otherwise

identical waves propagating in opposite directions.

The algebra is simple:

A(x, t) = A0

[

ei(kx−ωt) + ei(kx+ωt)
]

= A0e
ikx

[

e−iωt + e+iωt
]

= A0e
ikx[cos(ωt) − i sin(ωt)

+cos(ωt) + i sin(ωt)]

= 2A0 cos(ωt)eikx. (12)



The real part of this (which is all we ever actually

use) describes a sinusoidal waveform of wavelength

λ = 2π/k whose amplitude 2A0 cos(ωt) oscillates

in time but which does not propagate in the x di-

rection.

Standing waves are very common, especially where

a traveling wave is reflected from a boundary, since

this automatically creates a second wave of similar

amplitude and wavelength propagating back in the

opposite direction — the very condition assumed at

the beginning of this discussion.



Water Waves

Although all sorts of waves are ubiquitous in our

lives,§ our most familiar “wave experiences” are prob-

ably with water waves, which are unfortunately one

of the least simple types of waves. Although wa-

ter waves are routinely used for illustration, they

are rarely discussed in great depth (heh, heh) in

any introductory Physics texts. They do, however,

serve to illustrate one important feature of waves,

namely that not all waves obey the simple relation-

ship c = ω/k for their propagation velocity c.

§Indeed, we are made of waves, as quantum mechanics has
taught us!



Let’s restrict ourselves to deep ocean waves, where

the “restoring force” is simply gravity. (When a

wave reaches shallow water, the bottom provides an

immobile boundary that complicates matters severely,

as anyone knows who has ever watched surf break-

ing on a beach!) The motion of an “element” of

water in such a wave is not simply “up and down”

as we pretended at the beginning of this chapter,

but a superposition of “up and down” with “back

and forth” in the direction of wave propagation. A

cork floating on the surface of such a wave executes

circular motion, or so I am told.

More importantly, the propagation velocity of such

waves is higher for longer wavelength.



Phase vs. Group Velocity

The precise relationship between angular frequency

ω and wavenumber k for deep-water waves is

ω =

√

g k

2
(13)

where g has its usual meaning. Such a functional

relationship ω(k) between frequency and wavenum-

ber is known as the dispersion relation for waves

in that medium.



If we have a simple traveling plane wave A(x, t) =

A0 exp[i(kx − ωt)], with no beginning and no end,

the rate of propagation of a point of constant phase

(known as the phase velocity vph) is still given by

vph ≡
ω

k
(14)

However, by combining Eq. (14) with Eq. (13) we

find that the phase velocity is higher for smaller

k (longer λ):

vph =

√

g

2k
. (15)



Moreover, such a wave carries no information. It has

been passing by forever and will continue to do so

forever; it is the same amplitude everywhere; and so

on. Obviously our plane wave is a bit of an over-

simplification. If we want to send a signal with a

wave, we have to turn it on and off in some pattern;

we have to make wave pulses (or, anticipating the

terminology of quantum mechanics, “wave pack-

ets”). And when we do that with water waves, we

notice something odd: the wave packets propagate

slower than the “wavelets” in them!



Such a packet is a superposition of waves with dif-

ferent wavelengths; the k-dependence of vph causes

a phenomenon known as dispersion, in which waves

of different wavelength, initially moving together in

phase, will drift apart as the packet propagates,

making it “broader” in both space and time. (Obvi-

ously such a dispersive medium is undesirable for

the transmission of information!) But how do we de-

termine the effective speed of transmission of said

information — i.e. the propagation velocity of the

packet itself, called the group velocity vg?



The general definition of the group velocity (the

speed of transmission of information and/or energy

in a wave packet) is

vg ≡
∂ω

∂k
. (16)

For the particular case of deep-water waves, Eq. (16)

combined with Eq. (13) gives

vg =
1

2

√

g

2k
. (17)

That is, the packet propagates at half the speed of

the “wavelets” within it. This behaviour can actu-

ally be observed in the wake of a large vessel on the

ocean, seen from high above (e.g. from an airliner).



Such exotic-seeming wave phenomena are ubiqui-

tous in all dispersive media, which are anything but

rare. For now, however, we will restrict ourselves

to waves propagating through simple non-dispersive

media, for which the dispersion relation is just

ω = c k with c constant, for which vph = vg = c.



Electromagnetic Waves

We have some difficulty visualizing a wave consist-

ing only of electric and magnetic fields. However,

if we plot the strength of ~E along one axis and the

strength of ~B along another (perpendicular) axis,

then the direction of propagation k̂ will be perpen-

dicular to both ~E and ~B, as shown.



Polarization

The case shown is linearly polarized, which means

simply that the ~E and ~B fields are in specific fixed

directions. Of course, the directions of ~E and ~B

could be interchanged, giving the “opposite” po-

larization. Polaroid sunglasses transmit the light

waves with ~E vertical (which are not reflected effi-

ciently off horizontal surfaces) and absorb the light

waves with ~E horizontal (which are), thus reduc-

ing “glare” (reflected light from horizontal surfaces)

without blocking out all light.



There is another possibility, namely that the two

linear polarizations be superimposed so that both

the ~E and ~B vectors rotate around the direction of

propagation k̂, remaining always perpendicular to k̂

and to each other. This is known as circular polar-

ization. It too comes in two versions, right circular

polarization and left circular polarization, referring

to the hand whose fingers curl in the direction of

the rotation if the thumb points along k̂.



The Electromagnetic Spectrum

Note logarithmic wavelength and frequency scales.



We have special names for electromagnetic (EM)

waves of different wavelengths λ and frequencies ω.¶

We call EM waves with λ >
∼ 1 m “radio waves”. If

λ fits into a small appliance it is “microwave”. At

the short λ end of the microwave spectrum, “in-

frared” begins; the name is meant to suggest ω be-

low the red end of the visible light spectrum of EM
waves, which extends from λ ∼ 500 nm (5000 Å)

for red light through orange, yellow, green and blue

to λ ∼ 200 nm (2000 Å) for violet light. Beyond

that we lose sight of the shorter wavelengths (so

to speak) and the next range is called “ultraviolet”,

which fades into “x-rays” and finally “gamma rays”

as ω increases and λ gets shorter.
¶If λ increases (so that the wavenumber k = 2π/λ decreases),
then the frequency ω must decrease to match, since the ratio
ω/k must always be equal to the same propagation velocity
c.



Spherical Waves

The utility of thinking of ~k as a “ray” becomes more

obvious when we get away from plane waves and

start thinking of waves with curved wavefronts. The

simplest such wave is the type that is emitted when

a pebble is tossed into a still pool — an example of

the “point source” that radiates waves isotropically

in all directions. The wavefronts are then circles in

two dimensions (the surface of the pool) or spheres

in three dimensions (as for sound waves) separated

by one wavelength λ and heading outward from the

source at the propagation velocity c.



In this case the “rays” k point along the radius vec-

tor r̂ from the source at any position and we can

write down a simple formula for the “wave function”

(displacement A as a function of position) that de-

pends only on the time t and the scalar distance r

from the source.

A plausible first guess would be just A(x, t) =

A0 ei(kr−ωt), but this cannot be right! Why not?

Because it violates energy conservation. The en-

ergy density stored in a wave is proportional to the

square of its amplitude; in the trial solution above,

the amplitude of the outgoing spherical wavefront

is constant as a function or r, but the area of that

wavefront increases as r2. Thus the energy in the

wavefront increases as r2? I think not!



We can get rid of this effect by just dividing the

amplitude by r (which divides the energy density by

r2). Thus a trial solution is

A(x, t) = A0

ei(kr−ωt)

r
. (18)

which is, as usual, correct. ‖

‖The factor of 1/r accounts for the conservation of energy
in the outgoing wave: since the spherical “wave front” dis-
tributes the wave’s energy over a surface area 4πr2 and the
flux of energy per unit area through a spherical surface of
radius r is proportional to the square of the wave amplitude
at that radius, the integral of |f |2 over the entire sphere (i.e.
the total outgoing power) is independent of r, as it must be.



We won’t use this equation for anything right now,

but it is interesting to know that it does accurately

describe an outgoing∗∗ spherical wave.

∗∗One can also have “incoming” spherical waves, for which
Eq. (18) becomes

A(x, t) = A
0

ei(kr+ωt)

r
.


