Boltzmann Distribution Revisited

Looked at as a the probability of a state with a given **energy** being occupied at different **temperatures**,

the Boltzmann distribution only starts to "get big" when

$$T > \mathcal{E}/k_{\rm B}$$
.

Averaging over the Boltzmann Distribution

Equipartition Theorem

Although the average potential energy of a gas molecule in the atmosphere (for instance) is, by the preceding analysis, just τ , the **Equipartition Theorem** states that the average energy associated with each degree of freedom of a system is $\frac{1}{2}\tau$. The discrepancy arises because most "degrees of freedom" (like the x, y and z components of the velocity of a gas atom) have a range from $-\infty$ to $+\infty$ (rather than from 0 to $+\infty$ like for the height of a gas molecule in the atmosphere) and also appear squared in the energy. This adds a factor of $\frac{1}{2}$. Proving this is nontrivial, so I will spare you the details.

It follows immediately that the mean energy U of an ideal gas of N particles in thermal equilibrium at temperature τ is just

 $U = 3/2 N \tau$

Assume specular, elastic collisions with the walls (like on a perfect pool table).

Momentum transferred to wall on right at each collision is $\Delta p_x = 2 m v_x$.

Time between collisions with that wall (2 transits of L_x) is $\Delta t = 2 L_x / V_x$

Average force (momentum transfer per unit time) due to 1 particle $F_x^1 = \Delta p_x / \Delta t = m v_x^2 / L_x$. This force is spread over the area A of the wall on the right for a **pressure** (force per unit area) $P_1 = F_x^1 / A$ or $P_1 = m v_x^2 / A L_x$. But $A L_x = V$, the volume of the box. Thus

 $P_1 = m v_x^2 / V$

We have a time-averaged pressure $P_1 = m v_x^2/V$ due to one particle bouncing back and forth at v_x . Now let's calculate the average value of v_x^2 at a given temperature τ .

The average values of $\langle v_{\chi}^2 \rangle$, $\langle v_{y}^2 \rangle$ and $\langle v_{z}^2 \rangle$ are surely the same by symmetry, and the sum of all three is just $\langle v^2 \rangle$, so we can take $\langle v_{\chi}^2 \rangle = \frac{1}{3} \langle v^2 \rangle$, giving $\langle P_1 \rangle = \frac{1}{3} m \langle v^2 \rangle / V = \frac{2}{3} \langle \frac{1}{2} m v^2 \rangle / V$ or $\langle P_1 \rangle V = \frac{2}{3} \langle \varepsilon \rangle$. This is the pressure due to **one** such particle.

The pressure due to **one** such particle is $\langle P_1 \rangle V = 2/3 \langle \mathcal{E} \rangle$. If there are N such particles bouncing around, each one contributes the same $\langle P_1 \rangle$, giving a net pressure P obeying $PV = 2/3 N \langle \mathcal{E} \rangle$.

But $N < \varepsilon$ is just (on average) the total kinetic energy of the ideal gas, $U = 3/2 N \tau$, giving