Boltzmann Distribution Revisited

Looked at as a the probability of a state with a given energy being occupied at different temperatures,
the Boltzmann distribution only starts to "get big" when

$$
T>\varepsilon / k_{\mathrm{B}} .
$$

Averaging over the Boltzmann Distribution

Looked at as a probability distribution over energy at a fixed temperature, the Boltzmann distribution is just an exponential decay. When we normalize this and use it to find the mean energy $\langle\varepsilon\rangle$, the result is just $<\varepsilon>=\tau=k_{\mathrm{B}} T$.

Equipartition Theorem

Although the average potential energy of a gas molecule in the atmosphere (for instance) is, by the preceding analysis, just τ, the Equipartition Theorem states that the average energy associated with each degree of freedom of a system is $1 / 2 \tau$. The discrepancy arises because most "degrees of freedom" (like the x, y and z components of the velocity of a gas atom) have a range from $-\infty$ to $+\infty$ (rather than from 0 to $+\infty$ like for the height of a gas molecule in the atmosphere) and also appear squared in the energy. This adds a factor of $1 / 2$. Proving this is nontrivial, so I will spare you the details.

It follows immediately that the mean energy U of an ideal gas of N particles in thermal equilibrium at temperature τ is just

$$
U=3 / 2 N \tau
$$

PRESSURE

Assume specular, elastic collisions with the walls (like on a perfect pool table).

PRESSURE

Momentum transferred to wall on right at each collision is $\quad \Delta p_{x}=2 m v_{x}$.

Time between collisions with that wall (2 transits of L_{x}) is

$$
\Delta t=2 L_{x} / v_{x}
$$

Average force (momentum transfer per unit time) due to 1 particle $F_{x}^{1}=\Delta p_{x} / \Delta t=m v_{x}^{2} / L_{x}$. This force is spread over the area A of the wall on the right for a pressure (force per unit area) $P_{1}=F_{x}^{1} / A$ or $P_{1}=m v_{x}^{2} / A L_{x}$. But $A L_{x}=V$, the volume of the box. Thus

$$
P_{1}=m v_{x}^{2} / V
$$

PRESSURE

We have a time-averaged pressure $P_{1}=m v_{x}^{2} / V$ due to one particle bouncing back and forth at v_{x}. Now let's calculate the average value of v_{x}^{2} at a given temperature τ.

The average values of $\left\langle v_{x}^{2}\right\rangle,\left\langle v_{y}^{2}\right\rangle$ and $\left\langle v_{z}^{2}\right\rangle$ are surely the same by symmetry, and the sum of all three is just $\left\langle v^{2}\right\rangle$, so we can take $\left\langle v_{x}^{2}\right\rangle=1 / 3\left\langle v^{2}\right\rangle$, giving $\left\langle P_{1}\right\rangle=1 / 3 m\left\langle V^{2}\right\rangle / V=2 / 3\left\langle 1 / 2 m v^{2}\right\rangle / V$ or $\left.<P_{1}\right\rangle V=2 / 3<\varepsilon>$. This is the pressure due to one such particle.

PRESSURE

The pressure due to one such particle is $\left\langle P_{1}>V=2 / 3<\varepsilon\right\rangle$. If there are N such particles bouncing around, each one contributes the same $\left\langle P_{1}\right\rangle$, giving a net pressure P obeying $P V=2 / 3 N<\varepsilon>$.

But $N<\varepsilon>$ is just (on average) the total kinetic energy of the ideal gas, $U=3 / 2 N \tau$, giving

$$
\begin{aligned}
& P V=N \tau \\
& \text { the Ideal Gas Law! }
\end{aligned}
$$

