
The University of British Columbia

Physics 401 Assignment # 2:

Review of Electrodynamics

SOLUTIONS:

Wed. 11 Jan. 2006 — finish by Wed. 18 Jan.

Please review Chapter 7. Numbered problems are (as
usual) taken from the course textbook: David J. Grif-
fiths, “Introduction to Electrodynamics”, 3rd Edition.

1. (p. 293, Problem 7.6) — Understanding EMF:

A rectangular loop of wire is situated so that one
end (height h) is between the plates of a parallel-
plate capacitor (see figure), oriented parallel to

the field ~E. The other end is ’way outside, where
the field is essentially zero. What is the emf
around this loop? If the total resistance is R,
what current flows? Explain. [Warning: this
is a trick question, so be careful. If you have in-
vented a perpetual motion machine, there’s prob-
ably something wrong with it.]

ANSWER: Obviously, if you believe
Faraday’s Law, there is no emf around the
loop. In principle this would not exclude a current
flowing through R, if there were a battery at the
other end to provide the voltage rise to go with its
voltage drop. So the question really boils down to
whether you can use an electric field as a battery.
This sounds silly until you start asking where the

charges go, at which point it gets confusing
enough to raise doubts. So that’s what this is
really all about. Where do the charges go? Well,
there are definitely surface charges on the wire
(although none on the inside; it is, after all, a

conductor, and ~E = 0 inside). Positive surface
charge will accumulate on the top of the loop and
a corresponding amount of negative charge will go
to the bottom, inside the capacitor. In fact, the
entire potential drop between the capacitor plates
will have to occur in the gaps between the wire
and the plates, since the wire is an equipotential.1

So why don’t the electrons on the bottom zip

1If we get too close, the resulting electric fields will be
strong enough to cause breakdown, which is why one tries
to keep wires out from between high voltage plates. Doh.

around through R to meet up with their positive
mates on top and provide a nice perpetual motion
machine? Because the same plate’s electric field
is holding them back! As we move outside the
capacitor, ~E “bulges” outward, giving a
component parallel to the wire that pulls electrons
back toward the plate on the bottom and pulls
any positive charges back toward the plate on the
top. When we get far enough away from the
capacitor for ~E to be negligible, the charges are
happy to stay where they are. This question is
potentially confusing only because it is so simple
and we aren’t used to thinking in these terms.

2. (p. 300, Problem 7.8) — Motional

Induction: A square loop of wire of side a is
near a long straight wire which is carrying a
current I, as shown in the figure.

(a) Find the magnetic field due to the current
carrying wire. ANSWER: You’ve
calculated this many times from Ampère’s

law. The field due to the wire is coming
straight out of the page (which we’ll call the

φ̂ direction) normal to the plane of the loop
and drops off inversely with r, the distance

away from the wire: ~B(r) =
µ0I

2πr
φ̂ .

(b) Find the flux of ~B through the loop.

ANSWER: The flux ΦB, like ~B, is “up”
through the loop. For a given value of s, the
flux through the loop is

ΦB =
µ0

2π
Ia

∫ s+a

s

dr

r
or

ΦB =
µ0

2π
Ia ln

[

s + a

s

]

.

(c) If the loop is pulled directly away from the
wire (upwards in the diagram) at speed v,
what is the emf generated?
ANSWER: Since B drops off as 1/r, the
magnitude of the flux through the loop will
decrease as we pull it away from the wire.

Since −
dΦB

dt
= −

dΦB

ds
×

ds

dt
= −

dΦ

ds
× v,

Faraday’s law gives

E = −
µ0

2π
I
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−
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v
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or E = −
µ0

2π
I

as

s + a

[

1

s + a
−

1

s

]

v .

(d) Does the induced current flow clockwise or
counter-clockwise in the loop?
ANSWER: By Lenz’s Law, the induced
emf around the loop will cause a current to
flow that produces its own field in a direction
that counteracts the change in flux — in this
case, to reestablish the decreasing flux “up”
through the loop; that means the current
will flow around the loop

counterclockwise (as viewed).

(e) What is the induced current in the loop if
the loop is pulled directly to the right,
instead of upwards? ANSWER: As long
as the wire is really semi-infinite, nothing
changes (at least not ΦB) and so there is no

emf and no current flows .

3. (p. 305, Problem 7.14) — Magnet Falling in

Copper Pipe: As a lecture demonstration, a
short cylindrical bar magnet is dropped down a
vertical copper tube of slightly larger diameter.
It takes several seconds to emerge at the
bottom, whereas an otherwise identical piece of
nonmagnetic iron makes the trip in a fraction of
a second. [You have seen this demo at least
once.] Explain why the magnet falls more

slowly. Please don’t be glib. Include a diagram
of the tube and magnet in your
answer/explanation, clearly indicating the
directions of any fields, currents or forces.

ANSWER: A truly rigourous calculation is
daunting, but we can make a “spherical elephant”
approximation that gives the correct qualitative
behaviour without bogging down in details or
being “glib”. Model the tube as a stack of rings.

(It isn’t, of course, but the main effect does not
depend on conduction along the tube axis ẑ.)
Now model the magnet as a simple dipole. Let’s
assume the North pole is on top so that the
magnetic field lines from the magnet point upward
along the centre of the tube, as shown. They also,
of course, spread out away from the axis, so that
as the magnet moves downward, less magnetic
flux links a given “ring” of the tube above the
magnet. This generates an emf in that ring
tending to generate an “upward” flux to replace
what went away — i.e. a current into the page on
the right and out of the page on the left. At the
position of the ring, ~B has an “outward”
horizontal component, which gives the Lorentz
force Id~ℓ × ~B (on the induced current in the
ring) a downward component all around the ring.
Newton’s third law demands an equal
upward force on the magnet due to the current in
the ring, but we have recently seen suspicious
results from a naive application of said law to
magnetic forces, so we should check its veracity
with alternate arguments. One would be that the
magnetization of the magnet is equivalent to a
current ring that goes into the page on the right
and out on the left to produce an upward ~B —
just like the induced current in the ring! Parallel
currents attract, so the magnet is pulled upward
by the induced current’s field. OK, looks like
Newton is safe for now. A ring below the magnet
sees an increasing flux as the magnet approaches,
and so “fights the change” with a current in the
opposite sense: in on the left and out on the
right. This repels the effective current ring of the
magnet, so the rings below it also impede its
descent. Are we done? Not quite. How come it
still falls? If the tube were a perfect conductor,
any induced emf would generate a current big
enough to completely compensate any attempted
change in flux, and a strong enough magnet
would simply stop falling. It is only because
copper has a finite conductivity that the ring ever
comes out the bottom; the “drag” force increases
as gravity accelerates the magnet, eventually
reaching a terminal velocity determined by the
magnet’s strength to weight ratio and the
conductivity of the tube.
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4. (p. 328, Problem 7.35) — Coulomb’s Law

for Magnetic Charges: 2 Assuming that
“Coulomb’s Law” for magnetic charges (qm)
reads:

~F =
µ0

4π

qm1
qm2

R2
R̂

(

where ~R ≡ ~r − ~r′
)

,

work out the analogue of the Lorentz force on a
magnetic monopole moving at velocity ~v
through electric and magnetic fields ~E and ~B.
ANSWER: The whole idea of magnetic
monopoles is to completely “symmetrize”
Maxwell’s equations with respect to the
transformation

~E → ~B ~B → −µ0ǫ0 ~E
ρe → µ0ǫ0 ρm ρm → −ρe

~Je → µ0ǫ0 ~Jm
~Jm → −~Je

(see section 7.3.4 on p. 327). In this spirit, the

Lorentz force ~F e = qe

(

~E + ~v × ~B
)

transforms into

~F m = qm

(

~B − µ0ǫ0 ~v × ~E
)

.

(If you like you can substitute 1/c2 for µ0ǫ0.)

5. (p. 328, Problem 7.36) — Monopole

Through Loop: 3 Suppose a magnetic
monopole qm passes through a resistanceless
loop of wire with self-inductance L.
What current is induced in the loop?

ANSWER: We mean “normal” (electrical)
current, of course. Such current is driven by a
“normal” (electrical) emf,

∮

~E · d~ℓ around the
loop, and that emf is generated by a changing
“normal” (magnetic) flux Φm =

∫∫ ~B · d~a:

E = −
∂Φm

∂t
= −L∂I

∂t
. If the current in the loop is

initially zero, integrating over time gives
∆Φm = L∆I or ∆I = ∆Φm/L. So what is
∆Φm? Well, initially the monopole is so far away
that Φm = 0; as it approaches the loop from (let’s
say) x = −∞, more and more field lines link the
loop until, when it reaches the exact centre of the
loop, exactly half the total magnetic flux
“emitted” by qm is coming out the +x side. As it
continues on past the loop, even more of its
emitted flux is “on that side”, until as x → +∞

the last few field lines are “on the right side” of
the loop. That is to say, all the flux emitted by
qm has passed through the loop: ∆Φm =
∫∫

©~B · d~a = B(r) × (4πr2) = µ0

4π
qm

r2 × (4πr2) or
∆Φm = µ0 qm, giving

2[For an interesting commentary, see W. Rindler,
Am. J. Phys. 57, 993 (1989).]

3[This is one of the methods used to search for
magnetic monopoles in the laboratory; see B. Cabrera,
Phys. Rev. Lett. 48, 1378 (1982).]

∆I = ∆Φm/L = µ0 qm/L .

This makes a nice distinctive signal and tells one
the magnitude of the detected monopole as well.
Note that the size of the loop doesn’t matter;
monopole detectors can therefore employ lots and
lots of very small loops that don’t pick up much
noise from randomly fluctuating ordinary
magnetic fields.

6. Seminar Topic: Write down your proposed

seminar topic.

There’s no “correct answer” to this one!


