
The University of British Columbia

Physics 401 Assignment # 5:

RELATIVISTIC ELECTRODYNAMICS

SOLUTIONS:

Wed. 1 Feb. 2006 — finish by Wed. 8 Feb.

This is a relatively [pun intended] short Assignment, since the first Midterm Exam is on Monday February 6 (in
class, 50 minutes). Nevertheless it will count the same as other Assignments, if you choose to tackle it. For the
exam, you may bring your own 1-page summary sheet with any hard-to-remember equations etc. The exam will
cover all of Chapters 7 and 8, sections 10.1 of Chapter 10, and all of Chapter 12. There will not be anything on
the Midterm explicitly about Fµν (second problem below) but applications of Eqs. (12.108) are fair game.

1. If we stay in the Lorentz gauge (∂µAµ = 0), Aµ is a genuine 4-vector and therefore AµAµ is a Lorentz

scalar. Use this fact to show that, in any frame, |~J |2 = c2(ρ2 − ρ2
0), where ρ0 is the charge density in the

frame where ~J = 0. ANSWER: If AµAµ is really a Lorentz scalar, then it has the same value in any

reference frame as it does in the frame where ~J = 0, namely (in Griffiths’ notation) −c2ρ2

0
. In general,

AµAµ = −c2ρ2 + |~J |2. Setting these equal and rearranging terms gives the desired result. This is just a
warm-up exercise in “invariant thinking”.

2. Use the formal definition of the Field Tensor Fµν in Eq. (12.118)1 and the rule for its Lorentz
transformation,2 F ′µν = Λµ

αΛν
βFαβ , to derive the equations analogous to Eqs. (12.108) describing the

transformation of ~E and ~B under a “boost” into a reference frame moving at velocity u (with the usual
corresponding definitions of β and γ) in the positive ẑ direction.3 ANSWER: This one drove me nuts
until I broke the “matrix multiplication” habit I learned in High School. Here we don’t find the µνth
component of the product of two tensors by summing the products of the elements of the µth row of the first
with the elements of the νth column of the second; instead we sum the products of the elements of the µth
row of the first with the elements of the νth row of the second. Doing this twice [first with ΛF and then with
Λ(ΛF )] gives ΛF =





γ 0 0 −βγ
0 1 0 0
0 0 1 0

−βγ 0 0 γ
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−ex 0 Bz −By
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 =





−βγez (−γex + βγBy) (−γey − βγBz) −γez

ex 0 −Bz By

ey Bz 0 −Bx

γez (βγex − γBy) (βγey + γBx) βγez





and Λ(ΛF ) =





(−βγ2ez + βγ2ez) (γex − βγBy) (γey + βγBz) (γ2ez − β2γ2ez)
(−γex + βγBy) 0 Bz (βγex − γBy)
(−γey − βγBx) −Bz 0 (βγey + γBx)
(β2γ2ez − γ2ez) (−βγex + γBy) (−βγey − γBx) (−βγ2ez + βγ2ez)





=





0 γ(ex − βBy) γ(ey + βBz) ez

γ(−ex + βBy) 0 Bz γ(βex − By)
γ(−ey − βBx) −Bz 0 γ(βey + Bx)

ez γ(−βex + By) γ(−βey − Bx) 0





where ~e ≡
~E/c has been defined for compactness.

That is,
E′

x = γ(Ex − uBy) E′

y = γ(Ey + uBz) E′

z = Ez

B′

x = γ(Bx + βEy/c) B′

y = γ(By − βEx/c) B′

z = Bz
.

1Let’s acquiesce to Griffiths’ notation for this problem.
2The Einstein summation convention is assumed: sum over all repeated indices.
3Eqs. (12.108) are for a “boost” in the x̂ direction. This is rather tedious, especially since the result is rather obvious

when you’re done, but everyone should do it once in order to understand that the definition of F
µν is more useful formally

(for elegantly expressing the essence of electromagnetism) than for solving practical problems.
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3. A capacitor made from two square parallel plates a on a side and d apart is given a charge −Q on the
upper plate and +Q on the lower plate. Let the origin of coordinates be in the centre of the capacitor,
the edges of the plates parallel to x̂ and ŷ and the gap in the ẑ direction.

Using Lorentz transformations, find ~E and ~B inside the capacitor

(a) in a frame moving at a velocity u in the x̂ direction;

ANSWER: For this we can just plug Ex = Ey = ~B = 0
and Ez = ǫ0Q/a2 into Eqs. (12.108) to get the only nonzero

components E′

z = γǫ0Q/a2 and B′

y = γ(u/c2)ǫ0Q/a2 where as usual γ ≡
(

1 − u2/c2
)

−1/2
.

(b) in a frame moving at a velocity u in the ẑ direction. ANSWER: Here we can use the analogous
equations derived in the previous problem to get the only nonzero component E′

z = Ez = ǫ0Q/a2. That
is, the fields have not changed. The only difference in geometry is that the plates are closer together due
to Lorentz contraction; but that does not affect the electric field, as we know.

(c) For the former case, compare your result with what you would expect from simply transforming the
dimensions of the plates into the moving frame and treating their motion as sheets of current.
ANSWER: Lorentz contraction shrinks distances parallel to the motion, but not perpendicular. Thus
the plates are no longer square; the edge in the x̂ direction is a factor of 1/γ shorter in the primed frame
while the other edge still has a length a. This compresses the net charge Q (an invariant) into an area
smaller by the same factor, increasing σ’ and consequently E′

z by a factor of γ.
√

Meanwhile the

plates are now sheets of current carrying ~K
′

= ∓σ′ux̂ for the top and bottom plates, respectively.4 As
for the electric field, σ′ = γQ/a2. We know that two opposite sheets of current produce a uniform

magnetic field between them given by ~B = (µ0/2)Kŷ or By = (µ0/2)(σ′u) = γQ(µ0/2a2)u.

Multiplying by (ǫ0/ǫ0) and noting that µ0ǫ0 = 1/c2 gives B′

y = γ(u/c2)ǫ0Q/a2 .
√

In a simple case like this, we get the right answer by simply taking Lorentz contraction into account. So
one might wonder if all the elaborate formalism is ever any real help in solving practical problems. The
answer is probably, “It depends on how flawlessy you can visualize all the effects without losing track of
any.” Equations like (12.108) allow you to transform into the frame of your choice “without much
thought” even for rather complicated situations (e.g. when the fields vary with position). But without
relativity we would have no way of making E&M obey Newton’s laws, of which we are understandably
fond. It emerges naturally that magnetic fields are an obligatory extension of Coulomb’s law when we
transform consistently into moving frames; and that knowledge is worth having!

4In the moving frame, the plates appear to be moving in the opposite direction; thus the current in the positive plate
is in the −x̂ direction and that in the negative plate is in the +x̂ direction.


