The University of British Columbia

Physics 401 Assignment \# 10:

RETARDED
 POTENTIALS SOLUTIONS:

Wed. 15 Mar. 2006 - finish by Wed. 22 Mar.

1. (p. 426, Problem 10.8) - Retarded Gauge: Confirm that the retarded potentials satisfy the Lorentz gauge condition,

$$
\begin{gather*}
\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\boldsymbol{A}}=-\frac{1}{c^{2}} \frac{\partial V}{\partial t} \quad \text { or } \quad \frac{\partial A^{\mu}}{\partial x^{\mu}}=0 \tag{1}\\
\text { where } \quad A^{0} \equiv \frac{V}{c} \quad\left(\text { and } \quad J^{0} \equiv c \rho\right) .
\end{gather*}
$$

ANSWER: Following the hint, we first show

$$
\begin{equation*}
\vec{\nabla} \cdot\left(\frac{\vec{J}}{\mathcal{R}}\right)=\frac{1}{\mathcal{R}}(\vec{\nabla} \cdot \vec{J})+\frac{1}{\mathcal{R}}\left(\vec{\nabla}^{\prime} \cdot \vec{J}\right)-\vec{\nabla}^{\prime} \cdot\left(\frac{\vec{J}}{\mathcal{R}}\right) \tag{3}
\end{equation*}
$$

where $\overrightarrow{\mathcal{R}} \equiv \overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime}, \vec{\nabla}$ denotes derivatives with respect to $\overrightarrow{\boldsymbol{r}}$, and $\vec{\nabla}^{\prime}$ denotes derivatives with respect to $\overrightarrow{\boldsymbol{r}}^{\prime}$: The identity

$$
\begin{equation*}
\vec{\nabla} \cdot(f \overrightarrow{\boldsymbol{v}})=f(\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\boldsymbol{v}})+\overrightarrow{\boldsymbol{v}} \cdot \overrightarrow{\boldsymbol{\nabla}} f \tag{4}
\end{equation*}
$$

and the (hopefully by now familiar) results

$$
\begin{align*}
\vec{\nabla}\left(\frac{1}{\mathcal{R}}\right) & =-\frac{\hat{\mathcal{R}}}{\mathcal{R}^{2}}=-\vec{\nabla}^{\prime}\left(\frac{1}{\mathcal{R}}\right) \tag{5}\\
\Longrightarrow \quad \vec{\nabla} \cdot\left(\frac{\vec{J}}{\mathcal{R}}\right) & =\frac{1}{\mathcal{R}}(\vec{\nabla} \cdot \vec{J})-\vec{J} \cdot\left(\frac{\hat{\mathcal{R}}}{\mathcal{R}^{2}}\right) \tag{6}\\
\& \quad \vec{\nabla}^{\prime} \cdot\left(\frac{\vec{J}}{\mathcal{R}}\right)= & \frac{1}{\mathcal{R}}\left(\vec{\nabla}^{\prime} \cdot \vec{J}\right)+\vec{J} \cdot\left(\frac{\hat{\mathcal{R}}}{\mathcal{R}^{2}}\right) . \tag{7}
\end{align*}
$$

Adding together Eqs. (6) and (7) gives Eq. (3). \checkmark Next, noting that $\overrightarrow{\boldsymbol{J}}\left(\overrightarrow{\boldsymbol{r}}^{\prime}, t-\mathcal{R} / c\right)$ depends on $\overrightarrow{\boldsymbol{r}}^{\prime}$ both explicitly and through \mathcal{R}, whereas it depends on \vec{r} only through \mathcal{R}, we confirm that

$$
\begin{gather*}
\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\boldsymbol{J}}=-\frac{1}{c} \dot{\boldsymbol{J}} \cdot\left(\overrightarrow{\boldsymbol{\nabla}}_{\mathcal{R}}\right) \tag{8}\\
\overrightarrow{\boldsymbol{\nabla}}^{\prime} \cdot \overrightarrow{\boldsymbol{J}}=-\dot{\rho}-\frac{1}{c} \dot{\boldsymbol{J}} \cdot\left(\overrightarrow{\boldsymbol{\nabla}}^{\prime} \mathcal{R}\right): \tag{9}
\end{gather*}
$$

Derivatives of $\vec{J}\left(\vec{r}^{\prime}, t_{r}\right)$ with respect to $\overrightarrow{\boldsymbol{r}}$ (on which it does not depend explicitly) mix in the
time derivative through the implicit dependence of t_{r} on $\overrightarrow{\boldsymbol{r}}=\overrightarrow{\boldsymbol{\mathcal { R }}}+\overrightarrow{\boldsymbol{r}}^{\prime}$. That is,

$$
\begin{equation*}
\vec{\nabla} \cdot \overrightarrow{\boldsymbol{J}}\left(\overrightarrow{\boldsymbol{r}}^{\prime}, t_{r}\right)=\left(\frac{\partial \overrightarrow{\boldsymbol{J}}}{\partial t_{r}}\right) \cdot \vec{\nabla} t_{r}=-\frac{\dot{\boldsymbol{J}} \cdot \hat{\mathcal{R}}}{c} \tag{10}
\end{equation*}
$$

because, for a given $\mathcal{R}, \frac{\partial \overrightarrow{\boldsymbol{J}}}{\partial t_{r}}=\frac{\partial \overrightarrow{\boldsymbol{J}}}{\partial t}=\dot{\boldsymbol{J}}$, and $\vec{\nabla} t_{r}=-\frac{1}{c} \vec{\nabla}_{\mathcal{R}}=-\frac{\hat{\mathcal{R}}}{c} . \sqrt{ }$
However, $\overrightarrow{\boldsymbol{J}}\left(\overrightarrow{\boldsymbol{r}}^{\prime}, t_{r}\right)$ depends explicitly and implicitly upon $\overrightarrow{\boldsymbol{r}}^{\prime}$, and must locally satisfy the EQUATION OF CONTINUITY $\vec{\nabla}^{\prime} \cdot J=-\dot{\rho}$ (i.e. charge conservation) at any instant of time in terms of the source coordinates $\overrightarrow{\boldsymbol{r}}^{\prime}$, so we have

$$
\begin{equation*}
\overrightarrow{\boldsymbol{\nabla}}^{\prime} \cdot J\left(\overrightarrow{\boldsymbol{r}}^{\prime}, t_{r}\right)=-\dot{\rho}+\frac{\dot{\boldsymbol{J}} \cdot \hat{\mathcal{R}}}{c} \tag{11}
\end{equation*}
$$

because $\vec{\nabla}^{\prime} t_{r}=-\frac{1}{c} \vec{\nabla}^{\prime} \mathcal{R}=+\frac{\hat{\mathcal{R}}}{c} . \sqrt{ }$
Finally we use this to calculate the divergence of $\overrightarrow{\boldsymbol{A}}$ in Eq. (10.19):

$$
\begin{align*}
A^{\mu}(\overrightarrow{\boldsymbol{r}}, t)= & \frac{\mu_{0}}{4 \pi} \iiint \frac{J^{\mu}\left(\overrightarrow{\boldsymbol{r}}^{\prime}, t_{r}\right) d \tau^{\prime}}{\mathcal{R}} \tag{12}\\
\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\boldsymbol{A}}= & \frac{\mu_{0}}{4 \pi} \iiint\left[\frac{1}{\mathcal{R}}\left(-\frac{1}{c} \dot{\boldsymbol{J}} \cdot \hat{\mathcal{R}}\right)\right. \\
& +\frac{1}{\mathcal{R}}\left(-\dot{\rho}+\frac{1}{c} \dot{\boldsymbol{J}} \cdot \hat{\mathcal{R}}\right) \\
& \left.-\overrightarrow{\boldsymbol{\nabla}}^{\prime} \cdot\left(\frac{\overrightarrow{\boldsymbol{J}}}{\mathcal{R}}\right)\right] d \tau^{\prime} .
\end{align*}
$$

The divergence theorem tells us that

$$
\iiint\left[\vec{\nabla}^{\prime} \cdot\left(\frac{\overrightarrow{\boldsymbol{J}}}{\mathcal{R}}\right)\right] d \tau^{\prime}=\oiint \frac{\overrightarrow{\boldsymbol{J}} \cdot d \overrightarrow{\boldsymbol{a}}^{\prime}}{\mathcal{R}} .
$$

Now, if the closed surface encloses all the charges and currents in the source volume, $\vec{J}=0$ over the whole surface and the surface integral is zero, leaving

$$
\begin{gathered}
\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\boldsymbol{A}}=\frac{\mu_{0}}{4 \pi} \iiint\left(\frac{-\dot{\rho}}{\mathcal{R}}\right) d \tau^{\prime} \\
=-\mu_{0} \epsilon_{0} \frac{\partial}{\partial t}\left\{\frac{1}{4 \pi \epsilon_{0}} \iiint\left(\frac{\rho}{\mathcal{R}}\right) d \tau^{\prime}\right\} \\
\text { or } \overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\boldsymbol{A}}=-\frac{1}{c^{2}} \frac{\partial V}{\partial t}, \checkmark \mathcal{Q E D}
\end{gathered}
$$

2. (p. 427, Problem 10.10) - Weird Loop:

A piece of wire bent into a weirdly shaped loop, as shown in the diagram, carries a current that increases linearly with time:

$$
I(t)=k t
$$

(a) Calculate the retarded vector potential $\overrightarrow{\boldsymbol{A}}$ at the center. ANSWER: Choose the origin at the same place as the field point: the centre. Thus $\overrightarrow{\boldsymbol{r}}=0$ and $\overrightarrow{\boldsymbol{R}}=-\overrightarrow{\boldsymbol{r}}^{\prime}$. The source region is uncharged, so $V=0$.

$$
\begin{aligned}
\overrightarrow{\boldsymbol{A}}(0, t) & =\frac{\mu_{0}}{4 \pi} \int \frac{\overrightarrow{\boldsymbol{I}}\left(\overrightarrow{\boldsymbol{r}}^{\prime}, t-r^{\prime} / c\right)}{-r^{\prime}} d \ell^{\prime} \\
=- & \frac{\mu_{0} k}{4 \pi}\left[2 \int_{a}^{b} \frac{(t-\ell / c) \hat{\boldsymbol{x}} d \ell}{\ell}\right. \\
& +\int_{0}^{\pi} \frac{(t-b / c) \hat{\boldsymbol{\theta}} b d \theta}{b} \\
& \left.-\int_{0}^{\pi} \frac{(t-a / c) \hat{\boldsymbol{\theta}} a d \theta}{a}\right]
\end{aligned}
$$

where $\hat{\boldsymbol{\theta}}=-\hat{\boldsymbol{x}} \sin \theta+\hat{\boldsymbol{y}} \cos \theta$. Now, by symmetry there is as much current going "up" as "down" at the same r^{\prime} and t_{r}, so the $\hat{\boldsymbol{y}}$ components cancel. This leaves

$$
\overrightarrow{\boldsymbol{A}}(0, t)=\frac{\mu_{0} k}{4 \pi} \mathcal{I} \hat{\boldsymbol{x}}
$$

where

$$
\begin{aligned}
& \begin{aligned}
\mathcal{I} & \equiv 2 t \int_{a}^{b} \frac{d \ell}{\ell}-\frac{2}{c} \int_{a}^{b} d \ell \\
& -\left(t-\frac{b}{c}\right) \int_{0}^{\pi} \sin \theta d \theta \\
& +\left(t-\frac{a}{c}\right) \int_{0}^{\pi} \sin \theta d \theta \\
= & 2 t \ln \left(\frac{b}{a}\right)-\frac{2(b-a)}{c} \\
& -2 t+2 \frac{b}{c}+2 t-2 \frac{a}{c}
\end{aligned} \\
& \text { or } \quad \overrightarrow{\boldsymbol{A}}(0, t)=t \frac{\mu_{0} k}{2 \pi} \ln \left(\frac{b}{a}\right) \hat{\boldsymbol{x}}
\end{aligned}
$$

(b) Find the electric field at the center.

ANSWER: \quad Since $V=0$ we have just

$$
\overrightarrow{\boldsymbol{E}}=-\frac{\partial \overrightarrow{\boldsymbol{A}}}{\partial t}=-\frac{\mu_{0} k}{2 \pi} \ln \left(\frac{b}{a}\right) \hat{\boldsymbol{x}}
$$

(c) Why does this (neutral) wire produce an electric field? ANSWER: Because the vector potential is changing with time, "Doh!" I think this is meant as a retroactive hint in case you got hung up on the preceding question.
(d) Why can't you determine the magnetic field from this expression for $\overrightarrow{\boldsymbol{A}}$?
ANSWER: Finding $\vec{B}=\vec{\nabla} \times \vec{A}$ requires knowledge of the dependence of \vec{A} on $\overrightarrow{\boldsymbol{r}}$; but we have calculated \vec{A} only at one point in space! If you want a differentiable $\overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{r}})$ you will have a far more difficult calculation to perform.
3. (p. 434, Problem 10.13) - Circulating

Charge: A particle of charge q moves in a circle of radius a at constant angular velocity ω. [Assume that the circle lies in the $x y$ plane, centered at the origin, and that at time $t=0$ the charge is at $(a, 0)$, on the positive x axis.] Find the Liénard-Wiechert potentials for points on the z axis. ANSWER: In general,

$$
\begin{gathered}
V(\overrightarrow{\boldsymbol{r}}, t)=\frac{q}{4 \pi \epsilon_{0}}\left[\frac{c}{\mathcal{R} c-\overrightarrow{\boldsymbol{\mathcal { R }} \cdot \boldsymbol{\boldsymbol { v }}}]_{\mathrm{ret}}} \begin{array}{c}
\overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{r}}, t)=V(\overrightarrow{\boldsymbol{r}}, t)\left[\frac{\overrightarrow{\boldsymbol{v}}}{c^{2}}\right]_{\mathrm{ret}}
\end{array}\right. \text { }
\end{gathered}
$$

where $[\cdots]_{\text {ret }}$ means that the quantities in the square brackets are to be evaluated at the retarded time $t_{r}=t-\mathcal{R} / c$. Relative to the origin, $\overrightarrow{\boldsymbol{r}}^{\prime}=a \hat{\boldsymbol{s}}=a[\hat{\boldsymbol{x}} \cos (\omega t)+\hat{\boldsymbol{y}} \sin (\omega t)]$.
For a point on the z axis, $\overrightarrow{\boldsymbol{r}}=z \hat{\boldsymbol{z}}$ and
$\overrightarrow{\boldsymbol{\mathcal { R }}}=z \hat{\boldsymbol{z}}-a \cos (\omega t) \hat{\boldsymbol{x}}-a \sin (\omega t) \hat{\boldsymbol{y}}$ so $\mathcal{R}=\sqrt{z^{2}+a^{2}}$, independent of time. We also have $\overrightarrow{\boldsymbol{v}}=a \omega[-\hat{\boldsymbol{x}} \sin (\omega t)+\hat{\boldsymbol{y}} \cos (\omega t)]$ and $v=a \omega$. Thus $\overrightarrow{\boldsymbol{\mathcal { R }}}\left(t_{r}\right)=z \hat{\boldsymbol{z}}-a \cos \theta_{r} \hat{\boldsymbol{x}}-a \sin \theta_{r} \hat{\boldsymbol{y}}$ and $\overrightarrow{\boldsymbol{v}}\left(t_{r}\right)=a \omega\left[-\hat{\boldsymbol{x}} \sin \theta_{r}+\hat{\boldsymbol{y}} \cos \theta_{r}\right]$ where
$\theta_{r} \equiv \omega\left(t-\sqrt{z^{2}+a^{2}} / c\right)$. Then $\overrightarrow{\boldsymbol{\mathcal { R }}}\left(t_{r}\right) \cdot \overrightarrow{\boldsymbol{v}}\left(t_{r}\right)=$
$a^{2} \omega\left[\cos \theta_{r} \sin \theta_{r}-\sin \theta_{r} \cos \theta_{r}\right]=0$, leaving

$$
V(\overrightarrow{\boldsymbol{r}}, t)=\frac{q}{4 \pi \epsilon_{0}} \frac{1}{\sqrt{z^{2}+a^{2}}} \text { and }
$$

$$
\overrightarrow{\boldsymbol{A}}(\overrightarrow{\boldsymbol{r}}, t)=\frac{\mu_{0}}{4 \pi} \frac{a \omega q}{\sqrt{z^{2}+a^{2}}}\left[-\hat{\boldsymbol{x}} \sin \theta_{r}+\hat{\boldsymbol{y}} \cos \theta_{r}\right]
$$

4. (p. 441, Problem 10.19) - Sliding String of Charges: An infinite, straight, uniformly charged string, with λ charge per unit length, slides along parallel to its length at a constant speed v.
(a) Calculate the electric field a distance d from the string, using Eq. (10.68):

$$
\overrightarrow{\boldsymbol{E}}(\overrightarrow{\boldsymbol{r}}, t)=\frac{q}{4 \pi \epsilon_{0}} \frac{1-v^{2} / c^{2}}{\left(1-v^{2} \sin ^{2} \theta / c^{2}\right)^{3 / 2}} \frac{\hat{\boldsymbol{R}}}{R^{2}}
$$

where $\overrightarrow{\boldsymbol{R}} \equiv \overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{v}} t$.

ANSWER: Suppose the field point is a perpendicular distance s from the string; measure z from the nearest point on the string, as shown in the diagram. Equation (10.68), in which we do not need to evaluate anything at a retarded time, gives the contribution to $\overrightarrow{\boldsymbol{E}}$ from a single charge q. We need to superimpose such contributions from all charge elements $d q=\lambda d z$ at positions $-\infty<z<+\infty$ down the string: for each of these we use $\overrightarrow{\boldsymbol{R}}=s \hat{\boldsymbol{x}}-z \hat{\boldsymbol{z}}$:

$$
\begin{aligned}
\overrightarrow{\boldsymbol{E}}(\overrightarrow{\boldsymbol{r}}, t) & =\frac{\lambda}{4 \pi \epsilon_{0}}\left(1-v^{2} / c^{2}\right) \overrightarrow{\mathcal{I}} \quad \text { where } \\
\overrightarrow{\boldsymbol{\mathcal { I }}} & \equiv \int_{-\infty}^{\infty} \frac{\hat{\boldsymbol{R}}}{R^{2}} \frac{d z}{\left(1-\beta^{2} \sin ^{2} \theta\right)^{3 / 2}}
\end{aligned}
$$

For each element $d z$ at z there is an equal element $d z$ at $-z$; thus the "horizontal" components cancel, leaving only the x component of $\hat{\boldsymbol{R}}$, namely $\hat{\boldsymbol{x}} \sin \theta$.
Meanwhile, since $s=R \sin \theta$,
$1 / R^{2}=\sin ^{2} \theta / s^{2}$; and since $-z=s \cot \theta$, $d z=s \csc ^{2} \theta d \theta=s d \theta / \sin ^{2} \theta$. So $d z / R^{2}=d \theta / s$ and

$$
\overrightarrow{\mathcal{I}}=\int_{0}^{\pi} \frac{\hat{\boldsymbol{x}} \sin \theta d \theta}{s\left(1-\beta^{2} \sin ^{2} \theta\right)^{3 / 2}}
$$

Let $u=\cos \theta$ so that $\sin \theta d \theta=-d u$ and $\sin ^{2} \theta=1-u^{2}$:

$$
\begin{aligned}
\overrightarrow{\boldsymbol{\mathcal { I }}} & =\frac{\hat{\boldsymbol{x}}}{s} \int_{-1}^{1} \frac{d u}{\left(1-\beta^{2}\left[1-u^{2}\right]\right)^{3 / 2}} \\
& =\frac{\hat{\boldsymbol{x}}}{s \beta^{3}} \int_{-1}^{1} \frac{d u}{\left(a^{2}+u^{2}\right)^{3 / 2}}
\end{aligned}
$$

$$
=\frac{\hat{\boldsymbol{x}}}{s \beta^{3}}\left[\frac{u}{a^{2} \sqrt{a^{2}+u^{2}}}\right]_{-1}^{1}
$$

where $\quad a^{2} \equiv \frac{1}{\beta^{2}}-1 . \quad$ Thus

$$
\begin{gathered}
\overrightarrow{\boldsymbol{\mathcal { I }}}=\frac{\hat{\boldsymbol{x}}}{s \beta^{3}}\left[\frac{2}{\left(\frac{1}{\beta^{2}}-1\right) \sqrt{\frac{1}{\beta^{2}}-1+1}}\right] \\
=\frac{\hat{\boldsymbol{x}}}{s}\left[\frac{2}{1-\beta^{2}}\right], \quad \text { so } \\
\overrightarrow{\boldsymbol{E}}(\overrightarrow{\boldsymbol{r}}, t)=\frac{\lambda}{2 \pi \epsilon_{0}} \frac{1-\beta^{2}}{1-\beta^{2}} \frac{\hat{\boldsymbol{x}}}{s} \quad \text { or } \\
\overrightarrow{\boldsymbol{E}}(\overrightarrow{\boldsymbol{r}}, t)=\frac{\lambda}{2 \pi \epsilon_{0}} \frac{\hat{\boldsymbol{x}}}{s}
\end{gathered}
$$

just as for a line charge at rest!
(b) Find the magnetic field of this string, using Eq. (10.69):

$$
\overrightarrow{\boldsymbol{B}}=\frac{1}{c}(\overrightarrow{\boldsymbol{\mathcal { R }}} \times \overrightarrow{\boldsymbol{E}})=\frac{1}{c^{2}}(\overrightarrow{\boldsymbol{v}} \times \overrightarrow{\boldsymbol{E}})
$$

where $\overrightarrow{\boldsymbol{\mathcal { R }}} \equiv \overrightarrow{\boldsymbol{r}}-\overrightarrow{\boldsymbol{r}}^{\prime} . \quad$ ANSWER: Well, $\overrightarrow{\boldsymbol{v}}=v \hat{\boldsymbol{z}}$ and $\hat{\boldsymbol{z}} \times \hat{\boldsymbol{x}}=\hat{\boldsymbol{y}}$, so this is trivial: ${ }^{1}$

$$
\overrightarrow{\boldsymbol{B}}(\overrightarrow{\boldsymbol{r}}, t)=\frac{\mu_{0} I}{2 \pi} \frac{\hat{\boldsymbol{y}}}{s}
$$

where $I=\lambda v$. (Again, the same result as for a steady current in magnetostatics.)

[^0]
[^0]: ${ }^{1}$ Strictly speaking, Eq. (10.69) is for a point charge, and so should be applied separately to each charge element $\lambda d z$. However, since $\overrightarrow{\boldsymbol{v}}$ has the same magnitude and direction for each, v comes outside the integral and all the non- y components of the individual cross products cancel out the same way the horizontal components of $\overrightarrow{\boldsymbol{E}}$ do.

