BIOL/PHYS 438

Zoologioal Physics

- Logistics \& CAP Exam announcement
- Introducing Ch. 4: "Fluids in the Body"
- Diffusion
- Chemical Potential
- Single-Cell Size Limit
- Haemoglobin

More Logistics

- People Database

- Please log in, Update your Profile (especially your Email address!) and participate.
- Few received my Email notice about the fabulous Harvard video on cellular nanoprocesses. :-(
- Projects
- Draft proposals due today!
- How about a Web Database of Project Ideas? (like the Quips database - anyone can contribute)

Logistics

Assignment 1: login, update, Email anytime! Assignment 2: due Tuesday

Assignment 3: Tuesday \rightarrow Thursday 15 Feb
Assignment 4: Thu 15 Feb \rightarrow Tue after Break
Spring Break: 17-25 Feb: work on Project too!

Conduction of Heat

For an infinitesimal region in a thermal gradient,

$$
J_{U}=\kappa \vec{\nabla} T
$$

Diffusion

High Concentration side $\left(n_{0}+\mathrm{d} n\right)$ $\left[m^{-3}\right]$

$$
\dot{N}_{\text {diff }}=D \cdot A \cdot \mathrm{~d} n / \mathrm{d} x
$$

Low Concentration side $\left(n_{0}\right) \quad\left[\mathrm{m}^{-3}\right]$

For an infinitesimal region in a concentration gradient,

$$
J_{N}=D \vec{\nabla} n \quad \text { (Fick's First Law) }
$$

Using the Chemical Potential

$\mu=-\tau \mathrm{d} \sigma / \mathrm{d} N$ is used like a potential energy [J] in that particles tend to move "downhill" from high μ to low μ. For ideal gases (and even for concentrations of solutes in water!) we have $\mu_{\mathrm{IG}}=\tau \log \left(n / n_{Q}\right)$ where n_{Q} is a constant. In thermal equilibrium, we require $\mu_{\text {tot }}=\mu_{\text {IG }}+\mu_{\text {ext }}=$ constant, where $\mu_{\text {ext }}$ is some "external" potential energy per molecule, like mgh or the binding energy of an O_{2} molecule to hcemoglobin.

Example: 100% humidity at roots vs. 90% at leaves will raise $\mathrm{H}_{2} \mathrm{O}$ molecules 1.5 km ! (but only as vapor)

Chemical Potential

A little more Statistical Mechanics: we have defined temperature τ by $1 / \tau=d \sigma / d U$ where U is the internal energy of "the system" and σ is its entropy. By similar logic we can define the system's chemical potential μ by $\mu / \tau=-\mathrm{d} \sigma / \mathrm{d} N$ where N is the number of particles of a given type that it contains. (There is a different μ for each type of particle.) Like τ, the chemical potential μ has units of energy [J]. Entropy increases when particles move from a region of high μ into a region of low μ... so they do!

Osmosis

Little molecules (like $\mathrm{H}_{2} \mathrm{O}$) can get through the "screen" but big solute molecules can't. If the solute "likes" to be dissolved in water, it will create a chemical potential to draw $\mathrm{H}_{2} \mathrm{O}$ molecules through the membrane, creating an effective "osmotic pressure".

Osmotic Diffusion

For an infinitesimal region in a concentration gradient,

$$
J_{\text {water }}=-D_{w} \vec{\nabla} n_{\text {solute }} \quad \text { (Fick's First Law) }
$$

Cell Wall

Courtesy of Myer Bloom \& CIAR Program on Soft Surfaces

Model of a Single Cell

$\dot{N}_{\text {diff }}=D \cdot A \cdot \mathrm{~d} n / \mathrm{d} r$ where $A=4 \pi r^{2}$ and $D \approx 1.8 \times 10^{-9} \mathrm{~m}^{2} \cdot \mathrm{~s}^{-1}=$ Diffusivity of O_{2} in $\mathrm{H}_{2} \mathrm{O}$. If $n_{w} \approx 0.03 n_{\text {air }} \approx 1.62 \times 10^{23} \mathrm{~m}^{-3}=$ Concentration of O_{2} in $\mathrm{H}_{2} \mathrm{O}$ and we assume that n decreases steadily to zero at $r=0$, then $\mathrm{d} n / \mathrm{d} r=n_{\mathrm{w}} / \mathrm{r}$, giving $\dot{N}_{\text {diff }}=3.66 \times 10^{15} r$, so the specific supply $s=\dot{N}_{\text {diff }} / M=0.88 \times 10^{12} r^{-2}$, in SI units. CO_{2} in $\mathrm{H}_{2} \mathrm{O} \quad$ Meanwhile, the specific demand of $d=\dot{N}_{\text {req }} / M$ comes to $d=2.21 \times 10^{18} b \Gamma_{0} / M=0.88 \times 10^{17} M^{-1 / 4} / b_{\mathrm{s}}$. Since M increases as r^{3}, d decreases as $r^{-3 / 4}$. The supply decreases faster than the demand, so eventually if a cell gets too big, it cannot get enough oxygen via diffusion alone.

Lungs \& Alveoli

Harmoglobin

$\mu=-\tau \mathrm{d} \sigma / \mathrm{d} N$ is like a potential energy [J]: oxygen molecules tend to move "downhill" from high μ to low μ. For concentrations of solutes in water we have $\mu_{\mathrm{IG}}=\tau \log \left(n / n_{\mathrm{Q}}\right)$ where n_{Q} is a constant. In thermal equilibrium, we require $\mu_{\mathrm{tot}}=\mu_{\mathrm{IG}}+\mu_{\mathrm{ext}}=$ constant, where $\mu_{\text {ext }}$ is the binding energy of an O_{2} molecule to hcemoglobin (Hb). The stronger the binding, the more "downhill"! The density n is proportional to the partial pressure p. Oxygen occupies all Hb sites for $p>10 \mathrm{kPa}(\sim 0.1 \mathrm{~atm})$ and is released when $p<2 \mathrm{kPa}$ $(\sim 0.02 \mathrm{~atm})$. What happens when CO competes with O_{2} for Hb ?

