BIOL/PHYS 438

Zociogioal Physics

Logistics

Assignment 1: login, update, Email anytime!
Assignment 2: due Today
Assignment 3: due Thursday 15 Feb
Assignment 4: Thu $15 \mathrm{Feb} \rightarrow$ Tue after Break
Spring Break: 17-25 Feb: work on Project too!

Viscosity vs. Temperature

A measure of a fluid's resistance to its rate of shear.

(Viscosity of water doubles from $30^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$)

Reynolds Number (Re)

The Reynolds number is the ratio of dynamic pressure ρu^{2} to shearing stress $\mu u / L$:

$$
R e=u L / v
$$

where $U=$ velocity of fluid flow (or velocity of object through fluid),
$L=$ characteristic length (e.g. diameter of pipe or that of object moving through fluid)
and $\quad V=$ kinematic viscosity of fluid: $V \equiv \mu / \rho$
Flow through a pipe is turbulent for $R e>2300$

Average Flow Velocity in a Pipe

The area-weighted average of

$$
\begin{gathered}
u(r)=(\Delta p / 4 \mu L)\left[R^{2}-r^{2}\right] \text { is } \\
u_{\mathrm{av}}=\Delta p R^{2} / 8 \mu L
\end{gathered}
$$

and the mass flow rate J is

$$
J=\rho u_{\mathrm{av}} \pi R^{2}=\frac{\pi R^{4}}{8 v} \cdot \frac{\Delta p}{L}
$$

Hagen Poiseuille pipe resistance
$\lambda_{\mathrm{HP}}=8 \mathrm{~V} / \pi R^{4}$

$$
\lambda_{\mathrm{HP}}=8 \mathrm{VL} / \pi R
$$

\qquad - $J=\Delta p / \lambda_{\mathrm{HP}}$

Flow Profile in a Pipe

$F / A=-\mu \mathrm{d} u / \mathrm{d} r$ locally: $A=2 \pi r L$ and $F=\pi r^{2} p$ where p is the pressure from the left. Thus $\mathrm{d} u / \mathrm{d} r=-(p / 2 \mu \mathrm{~L}) r$, which gives

$$
u(r)=(p / 4 \mu L)\left[R^{2}-r^{2}\right]
$$

When the Reynolds number Re exceeds about 2300, the flow becomes turbulent.

Doh! Du Jour

What's wrong with this picture?

Laminar vs. Turbulent Flow

Pipe Resistance

Laminal Flow Control

The Aorta

Harmoglobin

$\mu=-\tau \mathrm{d} \sigma / \mathrm{d} N$ is like a potential energy [J]: oxygen molecules tend to move "downhill" from high μ to low μ. For concentrations of solutes in water we have $\mu_{\mathrm{IG}}=\tau \log \left(n / n_{\mathrm{Q}}\right)$ where n_{Q} is a constant. In thermal equilibrium, we require $\mu_{\mathrm{tot}}=\mu_{\mathrm{IG}}+\mu_{\mathrm{ext}}=$ constant, where $\mu_{\text {ext }}$ is the binding energy of an O_{2} molecule to hœemoglobin (Hb). The stronger the binding, the more "downhill"! The density n is proportional to the partial pressure p. Oxygen occupies all 4 Hb sites for $p>10$ $\mathrm{kPa}(\sim 0.1 \mathrm{~atm})$ and is released when $p<2 \mathrm{kPa}(\sim 0.02$ atm). What happens when CO_{2} competes with O_{2} for Hb sites?

Aorta to Capillaries and Back

Heart Specs

