
BIOL/PHYS 438

� Logistics  (Next week: more ACOUSTICS)

� Review of  ELECTROMAGNETISM

� Phenomenology of Q & E :  Coulomb/Gauss

� Electrostatic Potential  V   (�Voltage�)

� Batteries & Capacitors :  cell membranes

� Conductors & Resistance  R

� RC  circuits & time constants

(Also next week:  ELECTROMAGNETISM )

Logistics

Assignment 1:  Solutions now online! 

Assignment 2:  Solutions now online!

Assignment 3:  Solutions now online!

Assignment 4:   Solutions online soon!

Assignment 5:   due Today

Assignment 6:   due Thursday after next

Hopefully your Projects are well underway now . . . 

Conservation & Symmetry
Think of  Q  as the source of a flux  J  

of some indestructible �stuff� (water, 

energy, anything that is conserved )  so 

that  J  points away from  Q  in all 

directions  (�isotropically�).  

r

Q
J

By symmetry, J must be 

normal to the surface of a 

sphere centred on Q and 

have the same magnitude J  

everywhere on the sphere's 

surface.   Gauss' Law says:

J

                                   . . . i.e.  �In steady state,      
                         what you start with is what you      
        end up with.�   For an isotropic source, since   

     the net area of the sphere is  4π r 2, this says 

that   the magnitude of  J  falls off as  1/r 2.   

Cylindrical Symmetry

E

 r

 J

 �

 �

There is nothing in the preceding arguments that depends upon the source  

being isotropic (like a point source).   It could equally well 

have cylindrical symmetry (like a line source), 

depending only on  r,  the 

distance away from the line.   In this case  

we get a flux  J  whose magnitude 

falls off like  1/r  instead of  1/r 2.

J ∝ 1/r                          

  source

Similar arguments apply for a 

planar source (one which depends 

only on the distance  r  away from 

some plane of symmetry).  In that 

case Gauss' Law predicts no falloff at all !  
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Predators know Gauss' Law!

r

�lines of rabbit�

Ra
bb

it

(source)

Strategy:  head in a straight 

line as long as the local 

magnitude of �rabbit flux� is 

increasing.  When it starts to 

decrease, make a 90o right 
turn [or left, but always the 
same way! ].   Repeat.  

This will always lead you to 

the rabbit, unless it realizes 

your strategy and moves.  

Q: is there any better strategy?

Q: what would a really clever rabbit do?

dog

Coulomb's Law

Think of  q1  as the source of �electric field lines�  E  pointing away

from it in all directions.  (For a + charge.   A � charge is a sink.)  

Then  F12 = q2 E  where we think of  E  as a vector field that is 

�just there for some reason� and  q2  is a �test charge� placed at 

some position where the effect  (F)  of  E  is manifested.   

We can then write Coulomb's Law a bit more simply: 

Fundamental Constants

c �    2.99792458 x 10 
8  m/s    exactly!

kE �  1/4� �0  =  c 2  x 10 –7 �    8.98755 x 10 
9  V�m�C 

–1

     =  8.987551787368176 x 10 
9  V�m�C 

–1    exactly!

�0  =  10 7 / 4� c 2 �    8.85 42 x 10 
–12  C2�N–1�m–2

        =  k    ,
where  k  is the 

dielectric constant.    

In free space, 

  =     .

This automatically 

takes care of the 

effect of dielectrics.

Electric Fields

r
Q

r

�

r  (independent of r )

�
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Electrostatic Potentials

r

Q

       relative to   V � 0
            as             r�  �

in moving from  r0  to  r
r

�

r

�
For finite objects,
 

� = Q/L

� = Q/A

 dV  = - E • dr

E = -    V

where

in moving from  r0  to  r

V

V

V

Model Cell Membrane

d

�+

Two oppositely charged parallel plates of area  A  

a distance  d  apart have a potential difference

 �V = Q d /  A  when they carry a net charge 

of  ±Q  per plate. 

Thickness of cell membrane: d  7 nm        �

Surface area of a typical cell: A  3x10� -10  m2

Dielectric constant:  k  8.8               �

�V = - 0.07 V  due to a negative charge

of Q  � - 0.245x10-12 Cb  inside,       

giving an electric field of  E = - � V /d    10� 7 V/m 

across the lipid bilayer.      

-�

-Q
+Q

�Actual� Cell Membrane

Note: each has the form

C = (   )(length)(const.)

Definition of 

capacitance:  

Q = C V

 V = Q /C 

C = Q /V

Capacitances

R
Q

 

R

�

d

�+

relative to a concentric

sphere at   R0 > R

relative to a coaxial 

cylinder at  R0 > R

-�
between two oppositely 

charged parallel plates
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Thickness of 

cell membrane: 

d  7 nm�

Radius of a 

typical cell: 

R
0
  5 µm�

k  8.8�

C  3.5x10� -12

farads

Cell Membrane Capacitor

R
Q

 

d

�+

       relative to a concentric

   sphere at   R0 > R.   If  R = R0 + d 

and   d « R0 ,  then (approximately) 

which, with  A = 4πR
0

2,  is the same as 

           between two oppositely charged parallel plates 

           a distance  d  apart.  
-�

R
0

2/d

Definition of 

capacitance:  

Q = C · �V

 �V = Q /C 

C = Q /�V

where we now 

use the more 

conventional 

��V � (for 

�voltage 

difference�) 

instead of ���

Capacitors

d

�+

-�
between two oppositely 

charged parallel plates

Since all capacitors behave the same, we might 

as well pretend they are all made from two flat 

parallel plates, since that geometry is so easy to 

visualize.   Thus the conventional symbol for a 

capacitor in a circuit is just the side view of such 

a device: 

C

In SERIES: 

Charge is conserved  �  same ±Q on each plate.  

But �V = Q /C  �  different  �Vi  across each Ci .  

�Voltage drops� add up, giving  �Vtot = �iQ /Ci  or 

Ceff = Q /�Vtot = 1 /�iCi
-1  -- i.e. ADD INVERSES!

Definition of 

capacitance:  

Q = C · �V

 �V = Q /C 

C = Q /�V

�Adding� Capacitors
In PARALLEL:

Same  �V = Qi /Ci  

across each Ci ; 

Qtot = �iQi =  �V �iCi 

or   Ceff = �iCi   --  i.e.  

ADD CAPACITANCES!

.

.

.

. . .

E = �/   = Q/A   

or  Q =   AE      

Electrostatic Energy Storage

d

�+
= Q/A

-�

It takes electrical work  dW = V dQ  to �push� a bit of charge  dQ  onto a 

capacitor  C  against the opposing EMF  V = -(1/C) Q  (where  Q  is the 

charge already on the capacitor).   This work is �stored� in the capacitor as  

dUE = - dW = (1/C) Q dQ .   If we start with an uncharged capacitor and 

add up the energy stored at each addition of  dQ  [i.e. integrate], we get 

  UE = ½ (1/C) Q 2

just like with a stretched spring  --  (1/C)  is like a �spring constant�.

E Thus  

  UE = ½ (d/  A)(  AE)2

  = ½ (Ad)   E 2

or 

UE / Vol � uE = ½   E 2
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�V = + �0

�Voltage rise� 

across a battery

The Battery:
�0

Think of the battery as a 

constant  (electromotive) 

�force� (EMF  �0 ) that can 

be applied to a circuit.

This is pretty simple.  

Understanding how one works 

can be a bit more challenging.  

If we visualize charge as an incompressible 

fluid (like water) then the battery is like a 

reservoir stored at higher altitude than the 

circuit, providing a sort of �pressure head� 

to drive the fluid through the circuit.  Such 

a flow of charge is called a �current�, which 

nicely reinforces this metaphor.   

- + 
OR

- + 

If we push the water into the rubber balloon (capacitor) it gets pushed back 

until the battery EMF is exactly balanced by the voltage drop across the 

capacitor.   But there are other difficulties in pushing water through a pipe....

�V = - i R

�Voltage drop� 

across a resistor

The Resistor:
R

Think of the resistor as a 

conduit through which 

charge  Q  flows at a rate

i � dQ/dt

against an electromotive 

�force� caused by �drag�.  

The power  P  (rate of 

energy dissipation) in a 

resistor is given by 

P = i �V = i 2 R

The �incompressible fluid� flowing through a 

�pipe� experiences a �drag force� that is 

proportional to the length of the pipe and 

the rate of flow of the fluid, and inversely 

proportional to the cross-sectional area of 

the pipe.   Analogously, the voltage drop 

across a resistor is proportional to its length 

and the current  i  and inversely proportional 

to its cross-sectional area.   The constant of 

proportionality is called the resistivity,  	 :

R = 	 � / A

i

ii

�A

In SERIES: 

Charge is conserved  �  same  i  through every Ri .  

But different  �Vi = - i  Ri  across each Ri .  

�Voltage drops� add up, giving  �Vtot = - i  Σi Ri  or 

Reff = �Vtot /i = Σi Ri  --  i.e. just ADD RESISTANCES!

�Adding� Resistors
In PARALLEL:

Same  �V = - ii Ri  

across each Ri ; 

i = - �V /Reff 

  = Σi ii =  - �V Σi Ri
-1

 

or  Reff = (Σi Ri
-1)-1

  --  i.e.  ADD INVERSES!

. . .

�V = - i R

�Voltage drop� 

across a resistori i

i1

i2

iN

R1

R2

RN

.

.

.

R1i iR2 RN

  Kirchhoff's Laws:

�  Charge Conserved:

   currents balance 

   at any junction.

�  V is single valued: 

   voltage drops

   around any closed

   loop sum to zero.

Properties of Air & Water

                                      Air       Pure Water      Sea Water        Fat

Dielectric Const. κ       1.00059             80.4                   78 @ 0oC              8.4

                                                                                               70 @ 25oC

Resistivity ρ [	 m]·          108             2x108                    0.19           2.5x108
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�Resistance is Futile!�

  Discharging a 

    capacitor 

     through a 

    resistor:

Kirchhoff's Law:

Sum of voltage drops 

around a circuit is zero. 

Thus  - Q /C - i R = 0 ,  giving the differential equation   dQ/dt = - Q /RC,

which you should recognize instantly(!) as describing exponential decay

(the rate of change of  Q  is negative and proportional to how much is left).

The answer (by inspection) is     Q(t ) = Q0 exp(- t /t)     where     t � RC
is the time constant for the decay.  

We have  �VC = - Q /C  

for the charged capacitor.  

Close switch at  t = 0  with  

Q0  on  C .   What happens?

i = dQ/dt   begins to flow 

through   R ,  causing a voltage 

drop  �VR = - i R  across  R .

C

R

+Q-Q

i

�Charging a Capacitor�

  Charging a 

  capacitor 

  through a 

  resistor:

Kirchhoff's Law:

Sum of voltage drops 

around a circuit is zero. 

Thus   �0 - Q /C - i R = 0 ,   giving   dQ/dt = �0 /R - Q /RC,   which requires

a change of variables to solve neatly:   Let   x = �0 /R - Q /t   where  t � RC

as before.   Then   dx/dt = - (1/t) dQ /dt = - (1/t) x   so   x(t ) = x0 e
-

 
t/t

where   x0 = �0 /R .    Thus   �0 /R - Q(t ) /t = (�0 /R) e-
 
t/t    giving

      Q(t ) = C �0 [1 - exp(- t/t)]      since    t �0 /R = RC �0 /R = C �0 .

 

We have an initially uncharged 

capacitor.    Close the switch at

t = 0 .   What happens?

i = dQ/dt   begins to flow 

through   R ,  causing a voltage 

drop  �VR = - i R  across  R .

�VC = - Q /C   builds up on  C .

C

R
i

�0

Ion Pumps:

Cells as

Batteries

Na+ & K+

Pumps & Gates

(Recall CAP Lecture)
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