The Statistics of
Running Faster

Howard Grubb

Department of Applied Statistics
The University of Reading, UK www.rdg.ac.uk/~snsgrubb/athletics

Questions:

1. Which is the best world record?
2. What will the mile record be in 2040 ?
3. How much do we slow as we get older?

All-time best performances

1. Which is the best world record?

dist (m)	Men	Women	ratio
100	$\underline{9.79}$	10.49	93%
200	19.32	21.34	91%
400	$\underline{43.18}$	47.60	91%
800	101.1	113.3	89%
1500	206.0	230.5	89%
1609	$\underline{223.1}$	252.6	88%
3000	440.7	486.1	91%
5000	759	868	87%
10000	1583	1772	89%
42195	7565	8447	90%

Men 200m (46)

The Statistics of Running Faster, BAAS, September 17, 1999
speed (m/s)

Performances at other distances

Time doubles with distance

Speed shows more features

The Statistics of Running Faster, BAAS, September 17, 1999

	\%WR speed dist (m)	
100	Men	Women
200.2%	100.1%	
400	100.9%	99.3%
800	99.9%	99.9%
1500	99.8%	99.3%
1609	99.5%	98.8%
3000	100.1%	101.5%
5000	100.1%	98.9%
10000	101.1%	102.0%
42195	99.4%	99.5%

Use \% WR speed to compare
Individual athlete has own speed curve

- calculator:
www.rdg.ac.uk/~snsgrubb/athletics/runcalc.html

British Records

dist(m)	Men Women		\%WR speed	
100	9.87	11.10	98.4%	94.6%
200	19.87	22.10	98.1%	95.9%
400	44.36	49.42	97.2%	96.2%
800	101.7	116.2	99.1%	96.8%
1500	209.7	238.1	98.1%	96.7%
1609	226.3	257.2	98.1%	96.6%
3000	452.8	507.4	97.4%	97.3%
5000	780	884	97.4%	97.2%
10000	1638	1827	97.7%	99.0%
42195	7633	8756	98.5%	96.0%

Putting them together with model for speed gives more information on progression

		Chapman-Richards		
Dist (m)	Record, 1999	Predicted lower bound	Diff	\% of limit
400	43.18	40.80	2.4	94.5
800	$1: 41.1$	$1: 34.8$	6.3	93.8
1500	$3: 26$	$3: 13$	13.0	93.7
5000	$12: 39$	$11: 55$	44	94.2
10000	$26: 23$	$25: 00$	$1: 23$	94.7
42195	$2: 06: 05$	$1: 55: 25$	$10: 40$	91.5

2. What will the mile WR be in 2040 ?
-1913 - mile record $=4: 14$

- 1954-4 minute mile
- 1999 - $3: 43$ mile
-7:58 2 miles - Komen 20/7/97
- 10km @ 4:15/mile
-3:26 1500m

\square

3. How much do we slow down?

Age-group WRs

 21 (of $8 \times 2 \times 12=192$) records broken at WAVA Champs (Gateshead, August):| | AGE 50 | | | ALL/50 | |
| ---: | ---: | ---: | ---: | ---: | ---: |
| dist (m) | M | W | M / W | M | W |
| 100 | 11.20 | 12.90 | 87% | 87% | 81% |
| 200 | 22.90 | 26.52 | 86% | 84% | 80% |
| 400 | 51.60 | 58.51 | 88% | 84% | 81% |
| 800 | 119.5 | 142.0 | 84% | 85% | 80% |
| 1500 | 245.2 | 294.3 | 83% | 84% | 78% |
| 3000 | 533.1 | 624.0 | 85% | 83% | 78% |
| 5000 | 896 | 1046 | 86% | 85% | 83% |
| 10000 | 1861.9 | 2211 | 84% | 85% | 80% |
| 42195 | 8370 | 10127 | 83% | 90% | 83% |

Performances by athletes of different ages/gender

Age-WR speeds - relative to overall WR

Comparing athletics performances

- Data - WRs, all time best times how far from these is a WR?
- Speed - slowing with distance reference curve - \%WRspeed
- WR progression
- Age-group WRs - slowing with age

4. How good was my race?

\square
Hill race

10km, but climbing (304 men, 81 women)
Reading half marathon 1999:
4500 runners, 3500 men

