BELIEVE   ME   NOT!    - -     A   SKEPTIC's   GUIDE  

next up previous
Next: Relativistic Energy Up: Fudging The Bohr Atom Previous: The Bohr Radius

Bohr's Energy Levels

Going on, we can calculate the net energy (kinetic plus potential) of an electron in the $n^{\rm th}$ Bohr orbital of the H atom:

\begin{displaymath}E_n \; = \; {p_n^2 \over 2 m} \; - \;
{1 \over 4 \pi \epsilon_\circ} {e^2 \over r_n}
\end{displaymath}

or [again using Eq. (8) to substitute $n \hbar / r_n$ for pn]

\begin{displaymath}E_n \; = \; {n^2 \hbar^2 \over 2 m r_n^2} \; - \;
{1 \over 4 \pi \epsilon_\circ} {e^2 \over r_n} .
\end{displaymath}

Now we replace rn with our expression (13) to get

\begin{displaymath}E_n \; = \; {n^2 \hbar^2 \over 2 m}
\left( m e^2 \over 4 \p . . . 
 . . . r
\left( 4 \pi \epsilon_\circ \right)^2 n^2 \hbar^2 \right]
\end{displaymath}

which simplifies to

 \begin{displaymath}E_n \; = \; - \left(1 \over 4 \pi \epsilon_\circ \right)^2
{ m e^4 \over n^2 \hbar^2 } \; = \; - {E_0 \over n^2}
\end{displaymath} (24.15)

where $E_0 = 2.18 \times 10^{-18}$ J = 13.6055 eV (where 1 eV = $1.60219 \times 10^{-19}$ J). We have thus reproduced Bohr's explanation for the empirical formulae of Balmer and Rydberg! Note that whereas the energy of confinement of a particle in a box increases as n2 (where n-1 is the number of nodes inside the box), the Bohr energy levels of an atom increase as -1/n2 (they get less negative and closer together as n increases). Of course, so far all these calculations have been done in the classical (nonrelativistic) limit. If the momenta get big enough (p comparable to or greater than mc) we have to do our calculations differently . . . .


next up previous
Next: Relativistic Energy Up: Fudging The Bohr Atom Previous: The Bohr Radius
Jess H. Brewer - Last modified: Wed Nov 18 17:29:46 PST 2015